岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2013年
z2期
45-50
,共6页
温智%俞祁浩%马巍%董盛时%牛富俊%王大雁%杨振
溫智%俞祁浩%馬巍%董盛時%牛富俊%王大雁%楊振
온지%유기호%마외%동성시%우부준%왕대안%양진
接触面%直剪试验%抗剪强度%玻璃钢%青藏粉土
接觸麵%直剪試驗%抗剪彊度%玻璃鋼%青藏粉土
접촉면%직전시험%항전강도%파리강%청장분토
interface%direct shear test%shear strength%fiberglass reinforced plastics%Qinghai-Tibetan silt
青藏直流±400 kV 输变电工程中采用表面光滑的玻璃钢覆盖基础表面,以减少切向冻胀力对基础的冻拔作用。过去的研究鲜有涉及土体特别是冻土与玻璃钢基础接触面的力学特性,为指导冻土区基础设计和安全评价,采用应变直剪仪开展了多种含水率和温度条件下青藏粉土-玻璃钢接触面直剪试验研究。结果表明,青藏粉土-玻璃钢接触面屈服时相应剪切位移很小,应变硬化阶段短暂或不显著;冻结状态下接触面应力-位移性状呈脆性破坏型,存在明显峰值;融化状态时接触面的剪应力-位移性状呈塑性破坏型,其应力-位移关系曲线为弱软化型和屈服型,没有明显峰值;融化状态时接触面抗剪强度值随含水率的增加而缓慢减小,冻结状态时其强度随负温绝对值和含水率的增加而增大,且随着土体含水率的增大,温度降低导致接触面抗剪强度增强效果更加显著,土体含水率大于19%后抗剪强度趋于稳定;温度对抗剪强度的影响主要体现于黏聚力的改变,且随着含水率的增加,温度影响增强。接触面内摩擦角随负温绝对值增加而减小,随含水率的增加而减小。
青藏直流±400 kV 輸變電工程中採用錶麵光滑的玻璃鋼覆蓋基礎錶麵,以減少切嚮凍脹力對基礎的凍拔作用。過去的研究鮮有涉及土體特彆是凍土與玻璃鋼基礎接觸麵的力學特性,為指導凍土區基礎設計和安全評價,採用應變直剪儀開展瞭多種含水率和溫度條件下青藏粉土-玻璃鋼接觸麵直剪試驗研究。結果錶明,青藏粉土-玻璃鋼接觸麵屈服時相應剪切位移很小,應變硬化階段短暫或不顯著;凍結狀態下接觸麵應力-位移性狀呈脆性破壞型,存在明顯峰值;融化狀態時接觸麵的剪應力-位移性狀呈塑性破壞型,其應力-位移關繫麯線為弱軟化型和屈服型,沒有明顯峰值;融化狀態時接觸麵抗剪彊度值隨含水率的增加而緩慢減小,凍結狀態時其彊度隨負溫絕對值和含水率的增加而增大,且隨著土體含水率的增大,溫度降低導緻接觸麵抗剪彊度增彊效果更加顯著,土體含水率大于19%後抗剪彊度趨于穩定;溫度對抗剪彊度的影響主要體現于黏聚力的改變,且隨著含水率的增加,溫度影響增彊。接觸麵內摩抆角隨負溫絕對值增加而減小,隨含水率的增加而減小。
청장직류±400 kV 수변전공정중채용표면광활적파리강복개기출표면,이감소절향동창력대기출적동발작용。과거적연구선유섭급토체특별시동토여파리강기출접촉면적역학특성,위지도동토구기출설계화안전평개,채용응변직전의개전료다충함수솔화온도조건하청장분토-파리강접촉면직전시험연구。결과표명,청장분토-파리강접촉면굴복시상응전절위이흔소,응변경화계단단잠혹불현저;동결상태하접촉면응력-위이성상정취성파배형,존재명현봉치;융화상태시접촉면적전응력-위이성상정소성파배형,기응력-위이관계곡선위약연화형화굴복형,몰유명현봉치;융화상태시접촉면항전강도치수함수솔적증가이완만감소,동결상태시기강도수부온절대치화함수솔적증가이증대,차수착토체함수솔적증대,온도강저도치접촉면항전강도증강효과경가현저,토체함수솔대우19%후항전강도추우은정;온도대항전강도적영향주요체현우점취력적개변,차수착함수솔적증가,온도영향증강。접촉면내마찰각수부온절대치증가이감소,수함수솔적증가이감소。
To mitigate the effect of frost heave, a countermeasure of fiberglass reinforced plastics (FRP) covering was put forward and applied to the foundation engineering of Qinghai-Tibetan transmission line. There is limited information involved in the mechanical properties of the interface between soil and FRP. A series of laboratory direct shear tests of the interface between silt and FRP plate are performed. The results show that the yield shear displacement is very small; and the interface shows short or no significant strain hardening stage. For frozen samples, the strength of the interface is drastically lost when the load reaches its critical strength. For unfrozen samples, the shear stress-displacement behavior of the interface is ductile failure and there is no obvious peak. The shear strength of the interface slowly decreases with the increase in water content for unfrozen samples. The strength of frozen sample increases with the increasing of negative absolute temperature and water content. Moreover, the temperature effect on the shear strength of the interface is more significant if soil water content is higher. When the soil water content is greater than 19%, the shear strength stabilized. The impact of temperature on the shear strength is mainly reflected in the change of cohesion. With the increasing of water content, temperature effects enhanced. The internal friction angle of the interface decreases with the increase in the absolute value of negative temperature and decreases with the increase of water content.