中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2013年
8期
2235-2242
,共8页
张凯%汤依伟%邹忠%程昀%宋文锋%贾明%卢海%张治安
張凱%湯依偉%鄒忠%程昀%宋文鋒%賈明%盧海%張治安
장개%탕의위%추충%정윤%송문봉%가명%로해%장치안
数值仿真%电化学模型%固相扩散%液相扩散%锂离子电池
數值倣真%電化學模型%固相擴散%液相擴散%鋰離子電池
수치방진%전화학모형%고상확산%액상확산%리리자전지
numerical simulation method%electrochemical model%solid phase diffusion%liquid phase diffusion%Li-ion battery
针对扩散极化及其影响因素,以LiMn2O4/石墨锂离子电池为研究对象,基于一维电化学模型开展了其放电过程中扩散极化的数值仿真研究。结果表明:在放电过程中,正负电极均存在固、液相扩散极化,且随着放电过程的深入,固、液相扩散极化均在增大。电极活性物质颗粒粒径对固相扩散过程影响显著,减小活性物质颗粒粒径能有效地降低固相扩散极化。当正、负极活性物质颗粒粒径分别由10和12μm减小到5和6μm,在1C放电1800 s时,颗粒表面和中心的锂离子浓度差分别降低至原来的25.35%和25.07%;当正、负极活性物质颗粒分别由10和12μm增加至20和24μm时,颗粒表面和中心的锂离子浓度差分别增加至原来的391.66%和266.96%。电极厚度是影响液相扩散极化的一个主要因素,厚度的减小能够缩短液相扩散的路径,从而减小电极的液相扩散极化。当正、负极电极厚度分别由90和60μm增加至112.5和75μm,在1C放电1800 s时,厚度方向的最大锂离子浓度差与平均浓度的比值相应地由14.05%和1.71%增加至19.54%和2.61%;当正、负极厚度分别由90和60μm减小至67.5和45μm时,厚度方向的最大锂离子浓度差与平均浓度的比值分别由14.05%和1.71%减小至8.72%和0.98%。
針對擴散極化及其影響因素,以LiMn2O4/石墨鋰離子電池為研究對象,基于一維電化學模型開展瞭其放電過程中擴散極化的數值倣真研究。結果錶明:在放電過程中,正負電極均存在固、液相擴散極化,且隨著放電過程的深入,固、液相擴散極化均在增大。電極活性物質顆粒粒徑對固相擴散過程影響顯著,減小活性物質顆粒粒徑能有效地降低固相擴散極化。噹正、負極活性物質顆粒粒徑分彆由10和12μm減小到5和6μm,在1C放電1800 s時,顆粒錶麵和中心的鋰離子濃度差分彆降低至原來的25.35%和25.07%;噹正、負極活性物質顆粒分彆由10和12μm增加至20和24μm時,顆粒錶麵和中心的鋰離子濃度差分彆增加至原來的391.66%和266.96%。電極厚度是影響液相擴散極化的一箇主要因素,厚度的減小能夠縮短液相擴散的路徑,從而減小電極的液相擴散極化。噹正、負極電極厚度分彆由90和60μm增加至112.5和75μm,在1C放電1800 s時,厚度方嚮的最大鋰離子濃度差與平均濃度的比值相應地由14.05%和1.71%增加至19.54%和2.61%;噹正、負極厚度分彆由90和60μm減小至67.5和45μm時,厚度方嚮的最大鋰離子濃度差與平均濃度的比值分彆由14.05%和1.71%減小至8.72%和0.98%。
침대확산겁화급기영향인소,이LiMn2O4/석묵리리자전지위연구대상,기우일유전화학모형개전료기방전과정중확산겁화적수치방진연구。결과표명:재방전과정중,정부전겁균존재고、액상확산겁화,차수착방전과정적심입,고、액상확산겁화균재증대。전겁활성물질과립립경대고상확산과정영향현저,감소활성물질과립립경능유효지강저고상확산겁화。당정、부겁활성물질과립립경분별유10화12μm감소도5화6μm,재1C방전1800 s시,과립표면화중심적리리자농도차분별강저지원래적25.35%화25.07%;당정、부겁활성물질과립분별유10화12μm증가지20화24μm시,과립표면화중심적리리자농도차분별증가지원래적391.66%화266.96%。전겁후도시영향액상확산겁화적일개주요인소,후도적감소능구축단액상확산적로경,종이감소전겁적액상확산겁화。당정、부겁전겁후도분별유90화60μm증가지112.5화75μm,재1C방전1800 s시,후도방향적최대리리자농도차여평균농도적비치상응지유14.05%화1.71%증가지19.54%화2.61%;당정、부겁후도분별유90화60μm감소지67.5화45μm시,후도방향적최대리리자농도차여평균농도적비치분별유14.05%화1.71%감소지8.72%화0.98%。
Taking a LiMn2O4/graphite battery as the research object, the diffusion polarization and its influencing factors of the battery were studied by numerical simulation method based on the one-dimensional electrochemical model. The results show that both liquid phase and solid phase diffusion polarizations exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The particle size of active materials has a distinct impact on the solid phase diffusion polarization, reducing the active material particle sizes can reduce the solid phase diffusion polarization effectively. As the particle radius of active materials in positive and negative electrodes decrease from 10 and 12μm to 5 and 6μm, respectively, the lithium ion concentration differences at surface and center will drop by 25.35%and 25.07%, respectively, when it discharges at 1C for 1 800 s. When the particle radius of active materials in positive and negative electrodes increase from 10 and 12μm to 20 and 24μm, respectively, the lithium ion concentration differences at surface and center in positive and negative electrode rise by 391.66% and 266.96%,respectively. The electrode thickness is a major influence factor of the liquid phase diffusion polarization, decreasing it can decrease the liquid diffusion path and the liquid phase diffusion polarization. As the thicknesses of positive and negative electrode increase from 90 and 60 μm to 112.5 and 75 μm, respectively, the ratios of the largest lithium ion concentration difference and the average lithium ion concentration along the positive and negative thickness direction increase from 14.05%and 1.71%to 19.54%and 2.61%, respectively. And when the thicknesses of positive and negative electrode decrease from 90 and 60 μm to 67.5 and 45 μm, respectively, the ratios between the largest lithium ion concentration difference and the average lithium ion concentration along the positive and negative thickness direction decrease from 14.05%and 1.71%to 8.72%and 0.98%, respectively.