中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2013年
25期
107-114
,共8页
静止无功补偿器%次同步振荡%接入位置%阻尼%控制
靜止無功補償器%次同步振盪%接入位置%阻尼%控製
정지무공보상기%차동보진탕%접입위치%조니%공제
static var compensator (SVC)%subsynchronous oscillation%location%damping%control
当前研究静止无功补偿器(static var compensator, SVC)抑制次同步振荡,大多将其接入机端或升压变高压侧,并仅考虑阻尼控制作用,对其它接入位置和电压调节的探讨不多,控制器的设计也不够简便。文中基于系统的dq轴数学模型,简化复转矩系数的计算,得到较精确的含SVC串补系统的电磁转矩表达式。利用该式分析SVC附加阻尼的机理以及与接入位置的关系,指出接入线路中点能使 SVC 当前研究静止无功补偿器(static var compensator, SVC)抑制次同步振荡,大多将其接入机端或升压变高压侧,并仅考虑阻尼控制作用,对其它接入位置和电压调节的探讨不多,控制器的设计也不够简便。文中基于系统的dq轴数学模型,简化复转矩系数的计算,得到较精确的含SVC串补系统的电磁转矩表达式。利用该式分析SVC附加阻尼的机理以及与接入位置的关系,指出接入线路中点能使 SVC 在谐振频附近提供更多正阻尼。同时分析SVC电压控制对次同步振荡的影响,指出电压控制的传递函数很可能会增大各扭振频下的附加阻尼相位差。对此提出一种基于相位补偿法的 PID 控制设计,参数整定简单快速,既可以维持系统电压水平和提高线路传输能力,也可有效抑制系统次同步振荡。特征值计算和时域仿真都证明了分析结果的正确性。
噹前研究靜止無功補償器(static var compensator, SVC)抑製次同步振盪,大多將其接入機耑或升壓變高壓側,併僅攷慮阻尼控製作用,對其它接入位置和電壓調節的探討不多,控製器的設計也不夠簡便。文中基于繫統的dq軸數學模型,簡化複轉矩繫數的計算,得到較精確的含SVC串補繫統的電磁轉矩錶達式。利用該式分析SVC附加阻尼的機理以及與接入位置的關繫,指齣接入線路中點能使 SVC 噹前研究靜止無功補償器(static var compensator, SVC)抑製次同步振盪,大多將其接入機耑或升壓變高壓側,併僅攷慮阻尼控製作用,對其它接入位置和電壓調節的探討不多,控製器的設計也不夠簡便。文中基于繫統的dq軸數學模型,簡化複轉矩繫數的計算,得到較精確的含SVC串補繫統的電磁轉矩錶達式。利用該式分析SVC附加阻尼的機理以及與接入位置的關繫,指齣接入線路中點能使 SVC 在諧振頻附近提供更多正阻尼。同時分析SVC電壓控製對次同步振盪的影響,指齣電壓控製的傳遞函數很可能會增大各扭振頻下的附加阻尼相位差。對此提齣一種基于相位補償法的 PID 控製設計,參數整定簡單快速,既可以維持繫統電壓水平和提高線路傳輸能力,也可有效抑製繫統次同步振盪。特徵值計算和時域倣真都證明瞭分析結果的正確性。
당전연구정지무공보상기(static var compensator, SVC)억제차동보진탕,대다장기접입궤단혹승압변고압측,병부고필조니공제작용,대기타접입위치화전압조절적탐토불다,공제기적설계야불구간편。문중기우계통적dq축수학모형,간화복전구계수적계산,득도교정학적함SVC천보계통적전자전구표체식。이용해식분석SVC부가조니적궤리이급여접입위치적관계,지출접입선로중점능사 SVC 당전연구정지무공보상기(static var compensator, SVC)억제차동보진탕,대다장기접입궤단혹승압변고압측,병부고필조니공제작용,대기타접입위치화전압조절적탐토불다,공제기적설계야불구간편。문중기우계통적dq축수학모형,간화복전구계수적계산,득도교정학적함SVC천보계통적전자전구표체식。이용해식분석SVC부가조니적궤리이급여접입위치적관계,지출접입선로중점능사 SVC 재해진빈부근제공경다정조니。동시분석SVC전압공제대차동보진탕적영향,지출전압공제적전체함수흔가능회증대각뉴진빈하적부가조니상위차。대차제출일충기우상위보상법적 PID 공제설계,삼수정정간단쾌속,기가이유지계통전압수평화제고선로전수능력,야가유효억제계통차동보진탕。특정치계산화시역방진도증명료분석결과적정학성。
In the researches of damping subsynchronous oscillation (SSO) by static var compensator (SVC), SVC was more placed at the terminal of generator or high voltage side of step-up transformer. Also the SVC only included a pure damping control. The studies of other locations and its voltage loop were fewer, and the design of the controller was not simple. Based on the dq mathematic model of the power system, calculation of the complex torque coefficient was simplified, and a more exact formula of electromagnetic torque used in series compensated system including SVC was derived. The influence of SVC location on its supplementary damping was analyzed. It revealed that SVC can provide more damping in resonance frequency when it is placed at middle of line. Impact of voltage control of SVC on SSO was also studied. Its transfer function would increase the phase displacement of supplementary damping between torsional frequencies. Therefore, a design method of PID controller based on phase compensation was proposed. Parameter tuning is simple and fast. The controller not only maintains system voltage level and enlarges the circuitry of transmitted power but also suppress subsynchronous oscillation. All of the conclusions were confirmed by the eigenvalue calculation and time domain simulations.