新疆大学学报(自然科学版)
新疆大學學報(自然科學版)
신강대학학보(자연과학판)
XINJIANG UNIVERSITY JOURNAL(NATURAL SCIENCE EDITION)
2013年
1期
41-46
,共6页
谱%谱子空间%非交换Lp空间%非交换Hardy空间
譜%譜子空間%非交換Lp空間%非交換Hardy空間
보%보자공간%비교환Lp공간%비교환Hardy공간
spectrum%spectral subspace%noncommutative Lp-spaces%noncommutative Hardy space
ftgt2G是群G作用在VNAM上的*自同构的-弱连续的表示,满足t=;t2G.对1p<1,ftgt2G可以延拓到非交换Lp空间上.基于谱子空间理论,讨论了非交换Hardy空间Hp().
ftgt2G是群G作用在VNAM上的*自同構的-弱連續的錶示,滿足t=;t2G.對1p<1,ftgt2G可以延拓到非交換Lp空間上.基于譜子空間理論,討論瞭非交換Hardy空間Hp().
ftgt2G시군G작용재VNAM상적*자동구적-약련속적표시,만족t=;t2G.대1p<1,ftgt2G가이연탁도비교환Lp공간상.기우보자공간이론,토론료비교환Hardy공간Hp().
Let {αt}t∈G be a σ-weakly continuous representations of group G as ?-automorphisms of von Neumann algebra M such thatτ?αt=τ,t∈G. For 1≤p<∞, we extend{αt}t∈G to Lp(M) which be a non-commutative Lp-space and investigate the noncommutative Hardy space Hp(α) based on the theory of spectral subspace.