噪声与振动控制
譟聲與振動控製
조성여진동공제
NOISE AND VIBRATION CONTROL
2013年
4期
75-78
,共4页
振动与波%三韧带手性结构%Bloch定理%频散特性%带隙
振動與波%三韌帶手性結構%Bloch定理%頻散特性%帶隙
진동여파%삼인대수성결구%Bloch정리%빈산특성%대극
vibration and wave%trigonal chiral structure%Bloch theorem%dispersion behavior%band gap
近年来,手性结构因其独特的几何形状和结构性能,而备受关注。Bloch定理被广泛应用于周期结构的研究之中,使用该方法对三韧带手性胞元的能带特性进行分析,并通过对手性结构模型的数值仿真,验证该方法的高效和正确性。结果显示,当振动频率处于结构的带隙范围内时,手性结构具有良好的振动衰减特性。由此进一步对手性胞元的几何形状进行参数研究,分析其对带隙的分布的影响,从而得到结论,适当地选择几何参数可以调节带隙的出现频率。
近年來,手性結構因其獨特的幾何形狀和結構性能,而備受關註。Bloch定理被廣汎應用于週期結構的研究之中,使用該方法對三韌帶手性胞元的能帶特性進行分析,併通過對手性結構模型的數值倣真,驗證該方法的高效和正確性。結果顯示,噹振動頻率處于結構的帶隙範圍內時,手性結構具有良好的振動衰減特性。由此進一步對手性胞元的幾何形狀進行參數研究,分析其對帶隙的分佈的影響,從而得到結論,適噹地選擇幾何參數可以調節帶隙的齣現頻率。
근년래,수성결구인기독특적궤하형상화결구성능,이비수관주。Bloch정리피엄범응용우주기결구적연구지중,사용해방법대삼인대수성포원적능대특성진행분석,병통과대수성결구모형적수치방진,험증해방법적고효화정학성。결과현시,당진동빈솔처우결구적대극범위내시,수성결구구유량호적진동쇠감특성。유차진일보대수성포원적궤하형상진행삼수연구,분석기대대극적분포적영향,종이득도결론,괄당지선택궤하삼수가이조절대극적출현빈솔。
In recent years, attention is devoted to the chiral structures due to its unique topology and structural properties. In this work, the Bloch theorem and method for the analysis of periodical structures was employed to study the band-gap property of a trigonal chiral structure. A finite element model was built to simulate the structure. Results demonstrate that the vibration transmission displays a significant attenuation for the frequencies located in the band gap. In addition, a parametric study was presented to investigate the dependence of the unit-cell geometry upon the distribution of the band-gap of the structure. It was concluded from the results that reasonable choice of the geometrical parameters can adjust the frequency of band-gap occurrence.