江苏科技大学学报(自然科学版)
江囌科技大學學報(自然科學版)
강소과기대학학보(자연과학판)
JOURNAL OF JIANGSU UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE EDITION)
2013年
3期
303-306
,共4页
王嘉谋%王尚户%何莉敏
王嘉謀%王尚戶%何莉敏
왕가모%왕상호%하리민
变系数5阶Korteweg-de Vries 方程%Lax对%自-B?cklund 变换%孤子解
變繫數5階Korteweg-de Vries 方程%Lax對%自-B?cklund 變換%孤子解
변계수5계Korteweg-de Vries 방정%Lax대%자-B?cklund 변환%고자해
variable-coefficient fifth-order Korteweg-de Vries equation%Lax pair%auto-B?cklund%solitonic so-lutions
文中以在众多领域中存在广泛应用的变系数函数5阶Korteweg-de Vries方程为研究对象,首先基于Ablowitz-Kaup-Newell-Segur系统推出方程存在孤子解的约束条件和Lax对,进而构造方程的自-B?cklund变换和孤子解,并分析讨论变系数函数对孤子解传播特征的影响。
文中以在衆多領域中存在廣汎應用的變繫數函數5階Korteweg-de Vries方程為研究對象,首先基于Ablowitz-Kaup-Newell-Segur繫統推齣方程存在孤子解的約束條件和Lax對,進而構造方程的自-B?cklund變換和孤子解,併分析討論變繫數函數對孤子解傳播特徵的影響。
문중이재음다영역중존재엄범응용적변계수함수5계Korteweg-de Vries방정위연구대상,수선기우Ablowitz-Kaup-Newell-Segur계통추출방정존재고자해적약속조건화Lax대,진이구조방정적자-B?cklund변환화고자해,병분석토론변계수함수대고자해전파특정적영향。
A variable-coefficient fifth-order Korteweg-de Vries equation is investigated in this paper , which has a wide range of application in physics and engineering fields .Using the Ablowitz-Kaup-Newell-Segur system , the constraint for this model to have soliton solutions and Lax pair are derived .Moreover, the auto-B?cklund trans-formation and solitonic solution are constructed .The influence of the variable-coefficient functions on propagation characteristics of the one solitonic solution is presented .