气象科技进展
氣象科技進展
기상과기진전
Advances in Meteorological Science and Technology
2013年
4期
136-143
,共8页
杨虎%李小青%游然%武胜利
楊虎%李小青%遊然%武勝利
양호%리소청%유연%무성리
风云三号卫星%微波成像仪%定标
風雲三號衛星%微波成像儀%定標
풍운삼호위성%미파성상의%정표
FengYun (FY)-3%Microwave Radiation Imager (MWRI)%calibration
风云三号卫星(FY-3)为极轨系列卫星,目前为止分别于2008年5月和2010年10月发射了上午轨道(A)和下午轨道(B)两颗卫星。微波成像仪(MicroWave Radiometer Imager,MWRI)是装载于FY-3上的重要遥感仪器。该仪器为10通道双极化微波成像仪器,中心观测频率设置为10.65,18.7,23.8,36.5和89.0GHz,每个频点有垂直(V)和水平(H)两个探测通道。获取的对地观测亮温数据可用于定量获取大气降水、水汽、海面风速、海温、海冰分布、土壤湿度和陆表温度等地球物理参数信息。目前微波成像仪运行状态稳定,每天获取两次全球覆盖数据。主要介绍微波成像仪定标状况和主要业务产品算法。
風雲三號衛星(FY-3)為極軌繫列衛星,目前為止分彆于2008年5月和2010年10月髮射瞭上午軌道(A)和下午軌道(B)兩顆衛星。微波成像儀(MicroWave Radiometer Imager,MWRI)是裝載于FY-3上的重要遙感儀器。該儀器為10通道雙極化微波成像儀器,中心觀測頻率設置為10.65,18.7,23.8,36.5和89.0GHz,每箇頻點有垂直(V)和水平(H)兩箇探測通道。穫取的對地觀測亮溫數據可用于定量穫取大氣降水、水汽、海麵風速、海溫、海冰分佈、土壤濕度和陸錶溫度等地毬物理參數信息。目前微波成像儀運行狀態穩定,每天穫取兩次全毬覆蓋數據。主要介紹微波成像儀定標狀況和主要業務產品算法。
풍운삼호위성(FY-3)위겁궤계렬위성,목전위지분별우2008년5월화2010년10월발사료상오궤도(A)화하오궤도(B)량과위성。미파성상의(MicroWave Radiometer Imager,MWRI)시장재우FY-3상적중요요감의기。해의기위10통도쌍겁화미파성상의기,중심관측빈솔설치위10.65,18.7,23.8,36.5화89.0GHz,매개빈점유수직(V)화수평(H)량개탐측통도。획취적대지관측량온수거가용우정량획취대기강수、수기、해면풍속、해온、해빙분포、토양습도화륙표온도등지구물리삼수신식。목전미파성상의운행상태은정,매천획취량차전구복개수거。주요개소미파성상의정표상황화주요업무산품산법。
Microwave Radiation Imagers (MWRIs) onboard the FengYun (FY)-3A/B satellites of China Meteorological Administration were launched on May 28, 2008, and November 5, 2010, respectively. They both observe the Earth atmosphere and land surface at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with dual polarization. After extensive on-orbit calibrations, the MWRI Level-1 data were collocated in space and time with the data from Aqua Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), F18 Special Sensor Microwave Imager Sounder (SSMIS), and Tropical Rainfall Measuring Mission Microwave Imager for cross-calibration. A forward radiative transfer model was used to simulate the clear sky brightness temperatures at the MWRI frequencies over ocean. The differences between MWRI observations and model simulations, referred to as “O-A,” and the double difference results from pairs of MWRI and AMSR-E were examined. Comparing to the biases between AMSR-E/SSMIS measurements and model simulations, the biases for MWRI are small and stable. Atmospheric and surface geophysical parameters are retrieved from MWRI observations using the heritage algorithms. It is shown that these environmental data records from MWRI are comparable with those similar data products from AMSR-E and SSMIS. Their biases from each other seemed to be minimal.