气象科技进展
氣象科技進展
기상과기진전
Advances in Meteorological Science and Technology
2013年
4期
116-125
,共10页
邱红%胡丽琴%张艳%陆段军%齐瑾
邱紅%鬍麗琴%張豔%陸段軍%齊瑾
구홍%호려금%장염%륙단군%제근
绝对定标%地球辐射收支(ERB)%地球辐射探测仪(ERM)%光谱订正
絕對定標%地毬輻射收支(ERB)%地毬輻射探測儀(ERM)%光譜訂正
절대정표%지구복사수지(ERB)%지구복사탐측의(ERM)%광보정정
Absolute calibration%Earth radiation budget(ERB)%Earth Radiation Measurement (ERM)%spectral correction
风云三号B星(FY-3B)携带的地球辐射探测仪(ERM)通过窄视场(NFOV)扫描和宽视场(WFOV)非扫描方式来观测地球大气。每种视场包括两个宽带通道,即光谱范围在0.2~50μm的全波段通道和在0.2~4.3μm之间的短波通道。将ERM观测去滤波的长波辐射、短波辐射与美国地球观测系统(EOS)Aqua卫星携带的云和地球辐射能量系统(CERES)飞行模式(FM)3中观测数据对比来检验ERM的定标。ERM的长波辐射和短波辐射与CERES数据具有较好的相关性,二者之间存在一定系统偏差。利用CERES数据对ERM数据做光谱订正。经过订正后,ERM长波辐射偏差会从-3.00W/(sr·m2)减小到-0.60W/(sr·m2),短波辐射的偏差从6.00W/(sr·m2)减小到4.00W/(sr·m2)。根据ERM在轨内定标数据分析了ERM长波及短波通道辐射响应的稳定性,结果显示全波通道长波部分较为稳定并且变化率小于1.5%,与之相比,短波通道变化较大,变化率超过3%。这些变化可能是由于探测器的退化而引起的,NFOV短波通道在轨运行8个月后因故障失效。
風雲三號B星(FY-3B)攜帶的地毬輻射探測儀(ERM)通過窄視場(NFOV)掃描和寬視場(WFOV)非掃描方式來觀測地毬大氣。每種視場包括兩箇寬帶通道,即光譜範圍在0.2~50μm的全波段通道和在0.2~4.3μm之間的短波通道。將ERM觀測去濾波的長波輻射、短波輻射與美國地毬觀測繫統(EOS)Aqua衛星攜帶的雲和地毬輻射能量繫統(CERES)飛行模式(FM)3中觀測數據對比來檢驗ERM的定標。ERM的長波輻射和短波輻射與CERES數據具有較好的相關性,二者之間存在一定繫統偏差。利用CERES數據對ERM數據做光譜訂正。經過訂正後,ERM長波輻射偏差會從-3.00W/(sr·m2)減小到-0.60W/(sr·m2),短波輻射的偏差從6.00W/(sr·m2)減小到4.00W/(sr·m2)。根據ERM在軌內定標數據分析瞭ERM長波及短波通道輻射響應的穩定性,結果顯示全波通道長波部分較為穩定併且變化率小于1.5%,與之相比,短波通道變化較大,變化率超過3%。這些變化可能是由于探測器的退化而引起的,NFOV短波通道在軌運行8箇月後因故障失效。
풍운삼호B성(FY-3B)휴대적지구복사탐측의(ERM)통과착시장(NFOV)소묘화관시장(WFOV)비소묘방식래관측지구대기。매충시장포괄량개관대통도,즉광보범위재0.2~50μm적전파단통도화재0.2~4.3μm지간적단파통도。장ERM관측거려파적장파복사、단파복사여미국지구관측계통(EOS)Aqua위성휴대적운화지구복사능량계통(CERES)비행모식(FM)3중관측수거대비래검험ERM적정표。ERM적장파복사화단파복사여CERES수거구유교호적상관성,이자지간존재일정계통편차。이용CERES수거대ERM수거주광보정정。경과정정후,ERM장파복사편차회종-3.00W/(sr·m2)감소도-0.60W/(sr·m2),단파복사적편차종6.00W/(sr·m2)감소도4.00W/(sr·m2)。근거ERM재궤내정표수거분석료ERM장파급단파통도복사향응적은정성,결과현시전파통도장파부분교위은정병차변화솔소우1.5%,여지상비,단파통도변화교대,변화솔초과3%。저사변화가능시유우탐측기적퇴화이인기적,NFOV단파통도재궤운행8개월후인고장실효。
The Earth Radiation Measurement (ERM) instrument onboard FengYun (FY)-3B satellite observes the Earth’s atmosphere with a narrow scanning ifeld of view (NFOV) and a wide nonscanning FOV (WFOV). For each ifeld of view, the measurements are made from two broadband channels:a total waveband channel covering 0.2-50μm and a shortwave (SW) band covering 0.2-4.3μm. The validation to the ERM calibration was carried out by comparing the unifltered longwave (LW) and SW radiances from ERM with those from Clouds and Earth’s Radiation Energy System (CERES) lfight model (FM) 3 onboard Earth Observing System Aqua satellite. While the ERM LWand SWradiances have a good correlation with CERES data, there is a systemic bias between the two data sets. A spectral correction is made for the ERM data using the CERES data. After the correction, the error of the ERM LW radiance is reduced from?3.00 to?0.60 W/(sr· m2). For the SW radiance, the bias is reduced from 6.00 to 4.00 W/(sr · m2). Based on the ERM in-orbit calibration data, the stability of the ERM LW radiometric response is analyzed, and it is shown that the gains are stable with a variation of less than 1.5%during its ifrst 9months in orbit. However, the gains at the SWchannels have larger changes and exceed 3%. These drifts might be caused by the detector degradation. Also, the NFOV scanner at the SW channel is no longer working after its 8 months in orbit.