气象科技进展
氣象科技進展
기상과기진전
Advances in Meteorological Science and Technology
2013年
4期
43-49
,共7页
谷松岩%郭杨%王振占%卢乃锰
穀鬆巖%郭楊%王振佔%盧迺錳
곡송암%곽양%왕진점%로내맹
FY-3A MWHS%定标%交叉对比
FY-3A MWHS%定標%交扠對比
FY-3A MWHS%정표%교차대비
Calibration%cross comparison%FY-3A MWHS
微波湿度计装载在中国新一代极轨气象卫星风云三号卫星上,可完成全天候大气湿度信息的被动微波遥感探测。风云三号A星(FY-3A)微波湿度计(MWHS)在150~191GHz频率范围内有5个通道,为保证在轨定量应用,FY-3A发射之前,在2m真空罐(TVAC)中完成了MWHS真空试验,获得了接收机非线性等基本参数。FY-3A MWHS在轨运行的4年中,性能一直稳定,扫描周期间冷空和热源观测结果的变化一般在20个计数以内;绕地一圈的轨道观测中热源温度变化不超过0.5K。基于从TVAC试验中获得的非线性订正,FY-3A MWHS观测亮温与NOAA-17 AMSU-B及NOAA-18 MHS观测亮温有很好的一致性;FY-3A MWHS与NOAA-17 AMSU-B瞬时匹配点平均亮温差在183±1GHz通道小于1.0K。在观测场与背景场的比较分析中,FY-3A MWHS183.31±1GHz通道的观测和模拟亮温差与NOAA-18 MHS具有相同分布特性;而对183.31±7GHz通道而言,FY-3A MWHS与背景场更为吻合。分析表明,FY-3A MWHS数据将有助于数值天气预报。
微波濕度計裝載在中國新一代極軌氣象衛星風雲三號衛星上,可完成全天候大氣濕度信息的被動微波遙感探測。風雲三號A星(FY-3A)微波濕度計(MWHS)在150~191GHz頻率範圍內有5箇通道,為保證在軌定量應用,FY-3A髮射之前,在2m真空罐(TVAC)中完成瞭MWHS真空試驗,穫得瞭接收機非線性等基本參數。FY-3A MWHS在軌運行的4年中,性能一直穩定,掃描週期間冷空和熱源觀測結果的變化一般在20箇計數以內;繞地一圈的軌道觀測中熱源溫度變化不超過0.5K。基于從TVAC試驗中穫得的非線性訂正,FY-3A MWHS觀測亮溫與NOAA-17 AMSU-B及NOAA-18 MHS觀測亮溫有很好的一緻性;FY-3A MWHS與NOAA-17 AMSU-B瞬時匹配點平均亮溫差在183±1GHz通道小于1.0K。在觀測場與揹景場的比較分析中,FY-3A MWHS183.31±1GHz通道的觀測和模擬亮溫差與NOAA-18 MHS具有相同分佈特性;而對183.31±7GHz通道而言,FY-3A MWHS與揹景場更為吻閤。分析錶明,FY-3A MWHS數據將有助于數值天氣預報。
미파습도계장재재중국신일대겁궤기상위성풍운삼호위성상,가완성전천후대기습도신식적피동미파요감탐측。풍운삼호A성(FY-3A)미파습도계(MWHS)재150~191GHz빈솔범위내유5개통도,위보증재궤정량응용,FY-3A발사지전,재2m진공관(TVAC)중완성료MWHS진공시험,획득료접수궤비선성등기본삼수。FY-3A MWHS재궤운행적4년중,성능일직은정,소묘주기간랭공화열원관측결과적변화일반재20개계수이내;요지일권적궤도관측중열원온도변화불초과0.5K。기우종TVAC시험중획득적비선성정정,FY-3A MWHS관측량온여NOAA-17 AMSU-B급NOAA-18 MHS관측량온유흔호적일치성;FY-3A MWHS여NOAA-17 AMSU-B순시필배점평균량온차재183±1GHz통도소우1.0K。재관측장여배경장적비교분석중,FY-3A MWHS183.31±1GHz통도적관측화모의량온차여NOAA-18 MHS구유상동분포특성;이대183.31±7GHz통도이언,FY-3A MWHS여배경장경위문합。분석표명,FY-3A MWHS수거장유조우수치천기예보。
The Microwave Humidity Sounder (MWHS) is a ifve-channel microwave radiometer in the range of 150~191 GHz onboard FengYun 3 (FY-3). Before the launch of FY-3A, the intensive thermal vacuum (TVAC) tests for MWHS had been carried out in a 2-m TVAC chamber, and the basic parameters such as receiver nonlinearity were obtained. Four-year operation shows that the performance of FY-3A MWHS remains stabile. The variations among space views and warm target views in the interval of scan lines were generally within 20 counts. In addition, the temperature lfuctuation of the warm target in a single pass is within 0.5 K. Primarily, due to the nonlinearity correction obtained from the TVAC test, radiance measurements of MWHS agree well with NOAA-17 AMSU-B and NOAA-18 Microwave Humidity Sounder (MHS) data. Averaged brightness temperature differences between FY-3 MWHS and NOAA-17 AMSU-B, at simultaneous cross-overpass points, are less than 1.08 K for the channels at 183±1 GHz. In the observation-minus-background comparison, the observed and simulated brightness temperature biases of FY-3 MWHS and NOAA-18 MHS exhibit similar performance in the 183.31±1 GHz channel;but in the 183.31±7 GHz channel, MWHS agrees better with background. It is anticipated that FY-3 MWHS data will contribute to numerical weather prediction.