有色金属科学与工程
有色金屬科學與工程
유색금속과학여공정
JIANGXI NONFERROUS METALS
2013年
4期
11-16
,共6页
锂离子电池正极材料%LiNi0.5Mn0.3Co0.2O2%Al掺杂%共沉淀法
鋰離子電池正極材料%LiNi0.5Mn0.3Co0.2O2%Al摻雜%共沉澱法
리리자전지정겁재료%LiNi0.5Mn0.3Co0.2O2%Al참잡%공침정법
lithium-ion cathode materials%LiNi0.5Mn0.3Co0.2O2%Al doping%co-precipitation technique
采用共沉淀法合成镍钴锰氢氧化物前躯体,使其和碳酸锂混合均匀后,高温焙烧合成锂离子正极材料LiNi0.5Mn0.3Co0.2O2,研究了掺杂Al(OH)3对材料循环性能的影响.用X射线衍射和扫描电镜对合成的粉末进行了表征,用电性能测试仪研究了材料的电化学性能.研究发现:温度为850℃时焙烧的材料具有最优的电性能,1C电流初始放电比容量达到157.2 mAh/g(2.75~4.2V),循环50次放电比容量保持率为94.8%,循环100次材料的放电比容量保持率为90.1%.通过少量掺杂Al(OH)3的电池材料结晶性有所提高,晶型趋于完整,但是材料的放电比容量有所降低,前100次循环掺杂对材料循环稳定性无显著改善效果.
採用共沉澱法閤成鎳鈷錳氫氧化物前軀體,使其和碳痠鋰混閤均勻後,高溫焙燒閤成鋰離子正極材料LiNi0.5Mn0.3Co0.2O2,研究瞭摻雜Al(OH)3對材料循環性能的影響.用X射線衍射和掃描電鏡對閤成的粉末進行瞭錶徵,用電性能測試儀研究瞭材料的電化學性能.研究髮現:溫度為850℃時焙燒的材料具有最優的電性能,1C電流初始放電比容量達到157.2 mAh/g(2.75~4.2V),循環50次放電比容量保持率為94.8%,循環100次材料的放電比容量保持率為90.1%.通過少量摻雜Al(OH)3的電池材料結晶性有所提高,晶型趨于完整,但是材料的放電比容量有所降低,前100次循環摻雜對材料循環穩定性無顯著改善效果.
채용공침정법합성얼고맹경양화물전구체,사기화탄산리혼합균균후,고온배소합성리리자정겁재료LiNi0.5Mn0.3Co0.2O2,연구료참잡Al(OH)3대재료순배성능적영향.용X사선연사화소묘전경대합성적분말진행료표정,용전성능측시의연구료재료적전화학성능.연구발현:온도위850℃시배소적재료구유최우적전성능,1C전류초시방전비용량체도157.2 mAh/g(2.75~4.2V),순배50차방전비용량보지솔위94.8%,순배100차재료적방전비용량보지솔위90.1%.통과소량참잡Al(OH)3적전지재료결정성유소제고,정형추우완정,단시재료적방전비용량유소강저,전100차순배참잡대재료순배은정성무현저개선효과.
The cathode materials LiNi0.5Mn0.3Co0.2O2 were synthesized through high-temperature calcination mixed with the compound of lithium carbonate and cobalt nickel manganese hydroxide precursor, which prepared by liquid co-precipitation technique. The effect of Al(OH)3 doped material on cycling performance was studied. The prepared powders were characterized by powder X-ray diffraction, scanning electron microscope, and electro-chemical character of the material was studied by electric performance testing instrument. It was proved that the material calcinated at 850 ℃ showed the best performance, the first discharge capacity of 2.75~4.2 V and at 1 C was 157.2 mAh/g, the capacity retention ratio was 94.8 % after 50 cycles and 90.1 %after 100 cycles. Through a small amount of Al doping, the crystalline of the material was improved and the crystal type tended to be complete while the discharge capacity decreased. There is no obvious influence on the material's cycle stability at the former 100 cycles.