地球化学
地毬化學
지구화학
GEOCHIMICA
2013年
4期
297-306
,共10页
丁平%沈承德%易惟熙%王宁%丁杏芳%付东坡%刘克新
丁平%瀋承德%易惟熙%王寧%丁杏芳%付東坡%劉剋新
정평%침승덕%역유희%왕저%정행방%부동파%류극신
城市大气CO2浓度%Δ14C%化石源CO2浓度%季节变化%人类活动%广州
城市大氣CO2濃度%Δ14C%化石源CO2濃度%季節變化%人類活動%廣州
성시대기CO2농도%Δ14C%화석원CO2농도%계절변화%인류활동%엄주
urban atmospheric CO2 concentration%Δ14C%fossil fuel-derived CO2 concentration%seasonal change%human activities%Guangzhou
中国科学院广州地球化学研究所(GIGCAS)大气CO2观测点的数据显示:2010年10月至2011年11月,该站点大气CO2浓度变化范围为460~550 mL/m3,月平均浓度介于470~530 mL/m3之间,呈现夏、秋季浓度低,春、冬季浓度较高的特点。大气CO2的δ13C值变化介于–9.00‰~–13.10‰之间,月平均值介于–9.60‰~–11.80‰之间,与大气 CO2浓度之间关系不显著,反映了人类活动对城市大气 CO2的影响。GIGCAS 站点大气CO2的Δ14C值波动剧烈,介于29.1‰~–85.2‰之间,月平均值波动范围为4.9‰~–41.7‰,年平均大气CO2的Δ14C值为–16.4‰。较高的Δ14C值出现在夏、秋两季(7~9月),均值约为–5.2‰,较低的Δ14C值出现在冬、春两季(12月至次年4月)、均值约为–27.1‰,据此计算得出的化石源CO2浓度变化范围为1~58 mL/m3,年平均值约24 mL/m3,较低的大气化石源CO2浓度出现在夏、秋两季(7~9月),均值为17 mL/m3,较高大气化石源CO2量出现在冬、春两季(12月至次年4月),均值约为29 mL/m3。气象条件和人类活动对城市大气化石源CO2浓度影响巨大,调整人类活动是减少大气化石源CO2污染的途径之一。
中國科學院廣州地毬化學研究所(GIGCAS)大氣CO2觀測點的數據顯示:2010年10月至2011年11月,該站點大氣CO2濃度變化範圍為460~550 mL/m3,月平均濃度介于470~530 mL/m3之間,呈現夏、鞦季濃度低,春、鼕季濃度較高的特點。大氣CO2的δ13C值變化介于–9.00‰~–13.10‰之間,月平均值介于–9.60‰~–11.80‰之間,與大氣 CO2濃度之間關繫不顯著,反映瞭人類活動對城市大氣 CO2的影響。GIGCAS 站點大氣CO2的Δ14C值波動劇烈,介于29.1‰~–85.2‰之間,月平均值波動範圍為4.9‰~–41.7‰,年平均大氣CO2的Δ14C值為–16.4‰。較高的Δ14C值齣現在夏、鞦兩季(7~9月),均值約為–5.2‰,較低的Δ14C值齣現在鼕、春兩季(12月至次年4月)、均值約為–27.1‰,據此計算得齣的化石源CO2濃度變化範圍為1~58 mL/m3,年平均值約24 mL/m3,較低的大氣化石源CO2濃度齣現在夏、鞦兩季(7~9月),均值為17 mL/m3,較高大氣化石源CO2量齣現在鼕、春兩季(12月至次年4月),均值約為29 mL/m3。氣象條件和人類活動對城市大氣化石源CO2濃度影響巨大,調整人類活動是減少大氣化石源CO2汙染的途徑之一。
중국과학원엄주지구화학연구소(GIGCAS)대기CO2관측점적수거현시:2010년10월지2011년11월,해참점대기CO2농도변화범위위460~550 mL/m3,월평균농도개우470~530 mL/m3지간,정현하、추계농도저,춘、동계농도교고적특점。대기CO2적δ13C치변화개우–9.00‰~–13.10‰지간,월평균치개우–9.60‰~–11.80‰지간,여대기 CO2농도지간관계불현저,반영료인류활동대성시대기 CO2적영향。GIGCAS 참점대기CO2적Δ14C치파동극렬,개우29.1‰~–85.2‰지간,월평균치파동범위위4.9‰~–41.7‰,년평균대기CO2적Δ14C치위–16.4‰。교고적Δ14C치출현재하、추량계(7~9월),균치약위–5.2‰,교저적Δ14C치출현재동、춘량계(12월지차년4월)、균치약위–27.1‰,거차계산득출적화석원CO2농도변화범위위1~58 mL/m3,년평균치약24 mL/m3,교저적대기화석원CO2농도출현재하、추량계(7~9월),균치위17 mL/m3,교고대기화석원CO2량출현재동、춘량계(12월지차년4월),균치약위29 mL/m3。기상조건화인류활동대성시대기화석원CO2농도영향거대,조정인류활동시감소대기화석원CO2오염적도경지일。
During October 2010 to November 2011, the urban atmospheric CO2 concentration observed in Guangzhou Institute of Geochemistry, Chinese Academy of Sciences in Guangzhou ranges from 550 mL/m3 to 460 mL/m3, with the monthly mean concentration fluctuating between 530 mL/m3 and 470 mL/m3. It shows lower concentrations in summer and autumn, and higher concentrations in spring and winter. The CO2δ13C values vary between –9.00‰ and –13.10‰, with the monthly mean values fluctuating between –9.60‰ and –11.80‰. The relationship between CO2 concentration and δ13C values is not significant, reflecting the influence from human activities on the urban atmospheric CO2. The Δ14C values of urban atmospheric CO2 in Guangzhou fluctuate dramatically from 29.1‰to–85.2‰, with an annual mean value of about–16.4‰. The monthly meanΔ14C values vary between 4.9‰ and –41.7‰. The higher Δ14C values mainly appear in summer and autumn (July to September), and the mean value is about–5.2‰, while, the lowerΔ14C values mainly appear in spring (December to April next year) and winter, with an average value of about –27.1‰. According to the Δ14C values, fossil fuel-derived CO2 concentrations are calculated ranges from 1 mL/m3 to 58 mL/m3, with the annual mean concentration of about 24 mL/m3. Correspondingly, the lower fossil fuel-derived CO2 concentrations appear in summer and autumn (July to September) and the mean value is about 17 mL/m3, while, the higher fossil fuel-derived CO2 concentrations appear in spring and winter (December to April next year) and the average value is about 29 mL/m3. Weather conditions and human activities play an important role on the fuel-derived CO2 contributed to urban atmospheric CO2. It is feasible that human can reduce the degree of fuel-derived CO2 pollution in urban atmosphere in Guangzhou through adjusting human activities.