山东大学学报(理学版)
山東大學學報(理學版)
산동대학학보(이학판)
JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE)
2013年
7期
93-100
,共8页
离散广义马尔可夫跳跃系统%非线性%静态输出反馈%线性矩阵不等式
離散廣義馬爾可伕跳躍繫統%非線性%靜態輸齣反饋%線性矩陣不等式
리산엄의마이가부도약계통%비선성%정태수출반궤%선성구진불등식
discrete-time descriptor Markov jump system%nonlinear%static output feedback stabilization%linear matrix inequality ( LMI)
讨论了一类非线性离散广义马尔可夫跳跃系统的静态输出反馈镇定问题。非线性函数满足二次受限条件。首先给出了保证非线性离散广义马尔可夫跳跃系统正则、因果,在原点的邻域内有惟一解,且随机稳定的一个线性矩阵不等式( linear matrix inequality, LMI)充分条件。然后利用奇异值分解方法,给出了静态输出反馈控制器的设计方法。最后用一个数值算例验证了本文方法的有效性。
討論瞭一類非線性離散廣義馬爾可伕跳躍繫統的靜態輸齣反饋鎮定問題。非線性函數滿足二次受限條件。首先給齣瞭保證非線性離散廣義馬爾可伕跳躍繫統正則、因果,在原點的鄰域內有惟一解,且隨機穩定的一箇線性矩陣不等式( linear matrix inequality, LMI)充分條件。然後利用奇異值分解方法,給齣瞭靜態輸齣反饋控製器的設計方法。最後用一箇數值算例驗證瞭本文方法的有效性。
토론료일류비선성리산엄의마이가부도약계통적정태수출반궤진정문제。비선성함수만족이차수한조건。수선급출료보증비선성리산엄의마이가부도약계통정칙、인과,재원점적린역내유유일해,차수궤은정적일개선성구진불등식( linear matrix inequality, LMI)충분조건。연후이용기이치분해방법,급출료정태수출반궤공제기적설계방법。최후용일개수치산례험증료본문방법적유효성。
The static output feedback stabilization problem for a class of nonlinear discrete-time descriptor Markov jump systems is investigated.The nonlinear function satisfies a quadratic constraint.First, a linear matrix inequality ( LMI) sufficient condition is given which guarantees that the nonlinear discrete-time descriptor Markov jump systems are regu-lar, causal, have unique solution in a neighborhood of the origin, and are stochastically stable.Then, based on singular value decomposition approach, the design method of static output feedback controllers is given.Last, a numerical ex-ample is provided to illustrate the effectiveness of the proposed method.