计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2013年
8期
867-870
,共4页
杨磊%刘建%王岩%李玲%毛福忠
楊磊%劉建%王巖%李玲%毛福忠
양뢰%류건%왕암%리령%모복충
催化重整%原料优化%C6链烷烃%反应收率%装置能耗
催化重整%原料優化%C6鏈烷烴%反應收率%裝置能耗
최화중정%원료우화%C6련완경%반응수솔%장치능모
catalytic reforming%feedstock optimization%C6 paraffin%reaction yield%the energy consumption of the unit
催化重整装置原料中的碳六链烷烃(C6链烷烃)环化脱氢生成芳烃的反应速率很慢、转化率也很低,很容易发生异构化反应和加氢裂化反应,对重整装置的目标产品贡献很小,另外还会增加装置的能量消耗,因此碳六链烷烃不是理想的重整进料组分。通过调整重整装置预处理分馏塔的操作,可以控制重整原料的初馏点,尽可能减少原料中C6链烷烃的含量。本文利用KBC公司的Petro-SIM软件对某炼厂的重整装置建立了反应机理模型,研究改变重整进料C6链烷烃含量后,装置收率、操作条件和能耗的变化情况。研究结果显示,将加氢预处理的分离塔塔底温度提高6℃、重整进料的初馏点提高4.3℃,C5以上的液体收率能够提高0.75%,多产汽油0.9 ton/h,装置的总体能耗下降3260 MJ/h,取得了较好的效果。
催化重整裝置原料中的碳六鏈烷烴(C6鏈烷烴)環化脫氫生成芳烴的反應速率很慢、轉化率也很低,很容易髮生異構化反應和加氫裂化反應,對重整裝置的目標產品貢獻很小,另外還會增加裝置的能量消耗,因此碳六鏈烷烴不是理想的重整進料組分。通過調整重整裝置預處理分餾塔的操作,可以控製重整原料的初餾點,儘可能減少原料中C6鏈烷烴的含量。本文利用KBC公司的Petro-SIM軟件對某煉廠的重整裝置建立瞭反應機理模型,研究改變重整進料C6鏈烷烴含量後,裝置收率、操作條件和能耗的變化情況。研究結果顯示,將加氫預處理的分離塔塔底溫度提高6℃、重整進料的初餾點提高4.3℃,C5以上的液體收率能夠提高0.75%,多產汽油0.9 ton/h,裝置的總體能耗下降3260 MJ/h,取得瞭較好的效果。
최화중정장치원료중적탄륙련완경(C6련완경)배화탈경생성방경적반응속솔흔만、전화솔야흔저,흔용역발생이구화반응화가경열화반응,대중정장치적목표산품공헌흔소,령외환회증가장치적능량소모,인차탄륙련완경불시이상적중정진료조분。통과조정중정장치예처리분류탑적조작,가이공제중정원료적초류점,진가능감소원료중C6련완경적함량。본문이용KBC공사적Petro-SIM연건대모련엄적중정장치건립료반응궤리모형,연구개변중정진료C6련완경함량후,장치수솔、조작조건화능모적변화정황。연구결과현시,장가경예처리적분리탑탑저온도제고6℃、중정진료적초류점제고4.3℃,C5이상적액체수솔능구제고0.75%,다산기유0.9 ton/h,장치적총체능모하강3260 MJ/h,취득료교호적효과。
Six carbon alkane as reformer feed components has slow reaction rate and low conversion rate, easily to occur isomerization reaction and hydrocracking reaction, small contribute to the target product, besides it will increase the unit energy consumption. So six carbon alkane is not an ideal reformer feed component. The content of C6 alkane in the feedstock can be minimized by changing the initial boiling point of the feedstock which can be controlled by adjusting the pretreatment fraction operation of reformer unit. By using KBC's Petro-SIM software, this research established a reformer reaction mechanism model studying on the variation of unit yield, operating conditions, the change of energy consumption after the content of C6 paraffin in the feedstock is changed. According to the optimizing result, when the bottom temperature of hydro treating separation column increased by 6 ℃ and the initial boiling point of the feedstock increased by 4.3 ℃, it resulted in increasing the liquid yield (C5+) by 0.75%and increasing gasoline production by 0.9 ton/h, and it realized the lowering overall energy consumption of the unit by 3260 MJ/h.