哈尔滨工程大学学报
哈爾濱工程大學學報
합이빈공정대학학보
JOURNAL OF HARBIN ENGINEERING UNIVERSITY
2013年
8期
1000-1005
,共6页
习会峰%刘逸平%汤立群%刘泽佳%穆建春%杨宝
習會峰%劉逸平%湯立群%劉澤佳%穆建春%楊寶
습회봉%류일평%탕립군%류택가%목건춘%양보
泡沫铝%温度效应%静态压缩%本构模型
泡沫鋁%溫度效應%靜態壓縮%本構模型
포말려%온도효응%정태압축%본구모형
aluminum foam%temperature effect%quasi-static compression%constitutive model
为探讨泡沫铝在静态压缩时的温度效应,开展了-50℃~300℃范围内不同温度下的泡沫铝静态压缩实验,分析了泡沫铝在不同温度下的力学性能,测得不同温度下泡沫铝的单轴压缩应力应变关系。通过分析Liu和Subhash的六参数本构模型的特点,提出将其简化为五参数模型。并应用五参数模型对不同温度下的实验数据拟合,拟合效果很好。分析和确定了模型中五参数随温度变化的函数,并代入五参数模型,从而建立了考虑温度效应的泡沫铝静态压缩本构模型。对该理论模型进行外推,可以得到更高温度下的泡沫铝应力应变关系,揭示随着温度升高,泡沫铝屈服后依次存在“无密实”、“完全流动”和“软化”等不同的状态。
為探討泡沫鋁在靜態壓縮時的溫度效應,開展瞭-50℃~300℃範圍內不同溫度下的泡沫鋁靜態壓縮實驗,分析瞭泡沫鋁在不同溫度下的力學性能,測得不同溫度下泡沫鋁的單軸壓縮應力應變關繫。通過分析Liu和Subhash的六參數本構模型的特點,提齣將其簡化為五參數模型。併應用五參數模型對不同溫度下的實驗數據擬閤,擬閤效果很好。分析和確定瞭模型中五參數隨溫度變化的函數,併代入五參數模型,從而建立瞭攷慮溫度效應的泡沫鋁靜態壓縮本構模型。對該理論模型進行外推,可以得到更高溫度下的泡沫鋁應力應變關繫,揭示隨著溫度升高,泡沫鋁屈服後依次存在“無密實”、“完全流動”和“軟化”等不同的狀態。
위탐토포말려재정태압축시적온도효응,개전료-50℃~300℃범위내불동온도하적포말려정태압축실험,분석료포말려재불동온도하적역학성능,측득불동온도하포말려적단축압축응력응변관계。통과분석Liu화Subhash적륙삼수본구모형적특점,제출장기간화위오삼수모형。병응용오삼수모형대불동온도하적실험수거의합,의합효과흔호。분석화학정료모형중오삼수수온도변화적함수,병대입오삼수모형,종이건립료고필온도효응적포말려정태압축본구모형。대해이론모형진행외추,가이득도경고온도하적포말려응력응변관계,게시수착온도승고,포말려굴복후의차존재“무밀실”、“완전류동”화“연화”등불동적상태。
To investigate the temperature effect of aluminum foam under compression in a static state, compressive experiments of aluminum foam under the temperature ranging from -50℃ to 300℃ were carried out. The mechani-cal behaviors of aluminum foam under different temperatures were analyzed, and the uniaxial stress-strain relation-ships of aluminum foam were measured. Based on the analysis of Liu and Subhash's six-parameter constitutive mod-el, a simplified five-parameter model was proposed. The five-parameter model was used to fit the experimental data at different temperatures, and the fitting results meet the experimental data well. The functions between the revised five parameters and changing temperature were analyzed and determined, and a constitutive model of aluminum foam with temperature effect was established. A further study on extrapolation of the theoretical model is investiga-ted, and the stress-strain relations of aluminum foam at higher temperatures can be obtained. The results show that the aluminum foam experiences three different states of "none compaction","full flow" and "softening" after the yield with the increment of temperature gradually.