电子学报
電子學報
전자학보
ACTA ELECTRONICA SINICA
2013年
8期
1647-1652
,共6页
周新宇%吴志健%王晖%李康顺%张浩宇
週新宇%吳誌健%王暉%李康順%張浩宇
주신우%오지건%왕휘%리강순%장호우
全局优化%粒子群优化%精英反向学习%差分演化变异%群体选择
全跼優化%粒子群優化%精英反嚮學習%差分縯化變異%群體選擇
전국우화%입자군우화%정영반향학습%차분연화변이%군체선택
global optimization%particle swarm optimization%elite opposition-based learning%differential evolutionary muta-tion%population-based selection
为解决传统粒子群优化算法易出现早熟的不足,提出了精英反向学习策略,引入精英粒子,采用反向学习生成其反向解,扩大搜索区域的范围,可增强算法的全局勘探能力。同时,为避免最优粒子陷入局部最优而导致整个群体出现搜索停滞,提出了差分演化变异策略,采用差分演化算法搜索最优粒子的邻域空间,可增强算法的局部开采能力。在14个测试函数上将本文算法与多种知名的PSO算法进行对比,实验结果表明本文算法在解的精度与收敛速度上更优。
為解決傳統粒子群優化算法易齣現早熟的不足,提齣瞭精英反嚮學習策略,引入精英粒子,採用反嚮學習生成其反嚮解,擴大搜索區域的範圍,可增彊算法的全跼勘探能力。同時,為避免最優粒子陷入跼部最優而導緻整箇群體齣現搜索停滯,提齣瞭差分縯化變異策略,採用差分縯化算法搜索最優粒子的鄰域空間,可增彊算法的跼部開採能力。在14箇測試函數上將本文算法與多種知名的PSO算法進行對比,實驗結果錶明本文算法在解的精度與收斂速度上更優。
위해결전통입자군우화산법역출현조숙적불족,제출료정영반향학습책략,인입정영입자,채용반향학습생성기반향해,확대수색구역적범위,가증강산법적전국감탐능력。동시,위피면최우입자함입국부최우이도치정개군체출현수색정체,제출료차분연화변이책략,채용차분연화산법수색최우입자적린역공간,가증강산법적국부개채능력。재14개측시함수상장본문산법여다충지명적PSO산법진행대비,실험결과표명본문산법재해적정도여수렴속도상경우。
Traditional particle swarm optimization (PSO)algorithm tends to suffer from premature convergence ;we proposed an elite opposition-based learning strategy in which elite particles are introduced to generate their opposite solutions by opposition-based learning .This mechanism can expand the search area and is helpful to enhance the global explorative ability of PSO .Mean-while ,a differential evolutionary mutation strategy is presented to avoid the best particle being trapped into local optima ,since this may cause search stagnation of the whole swarm .This strategy adopts differential evolution algorithm to search for the neighbor-hoods of the global best particle and is helpful to enhance the exploitation ability of PSO .We compared our algorithm with some state-of-the-art PSOs on 14 benchmarks ,the results show that our algorithm obtains better solution accuracy and quicker convergence speed .