光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2013年
9期
82-87
,共6页
智能视频监控%多核支持向量机%单词树%行人重现识别
智能視頻鑑控%多覈支持嚮量機%單詞樹%行人重現識彆
지능시빈감공%다핵지지향량궤%단사수%행인중현식별
intelligent video surveillance%multiple kernel SVM%vocabulary tree%people re-identification
目前,视频跟踪正向大范围长时间目标跟踪研究方向发展。重现行人识别是对行人目标进行大范围长时间持续跟踪的关键技术,是后续行为分析的基础。本文提出了一种基于非稀疏多核支持向量机的重现行人识别算法。首先,该方法提取跟踪行人视频图像序列的多层 SIFT 视觉单词树特征和多层颜色直方图特征。接着,利用高效的非稀疏多核支持向量机算法在线融合多层 SIFT 视觉单词树特征和多层颜色直方图特征得到行人外观模型。最后利用存储的行人外观模型库对重现行人进行识别。该方法可应用于多摄像机视频监控中同一行人目标的跨摄像机跟踪以及单摄像机监控中行人目标重新出现的识别。实验结果表明,该方法能快速训练人体目标外观模型,能获得很高的识别率。
目前,視頻跟蹤正嚮大範圍長時間目標跟蹤研究方嚮髮展。重現行人識彆是對行人目標進行大範圍長時間持續跟蹤的關鍵技術,是後續行為分析的基礎。本文提齣瞭一種基于非稀疏多覈支持嚮量機的重現行人識彆算法。首先,該方法提取跟蹤行人視頻圖像序列的多層 SIFT 視覺單詞樹特徵和多層顏色直方圖特徵。接著,利用高效的非稀疏多覈支持嚮量機算法在線融閤多層 SIFT 視覺單詞樹特徵和多層顏色直方圖特徵得到行人外觀模型。最後利用存儲的行人外觀模型庫對重現行人進行識彆。該方法可應用于多攝像機視頻鑑控中同一行人目標的跨攝像機跟蹤以及單攝像機鑑控中行人目標重新齣現的識彆。實驗結果錶明,該方法能快速訓練人體目標外觀模型,能穫得很高的識彆率。
목전,시빈근종정향대범위장시간목표근종연구방향발전。중현행인식별시대행인목표진행대범위장시간지속근종적관건기술,시후속행위분석적기출。본문제출료일충기우비희소다핵지지향량궤적중현행인식별산법。수선,해방법제취근종행인시빈도상서렬적다층 SIFT 시각단사수특정화다층안색직방도특정。접착,이용고효적비희소다핵지지향량궤산법재선융합다층 SIFT 시각단사수특정화다층안색직방도특정득도행인외관모형。최후이용존저적행인외관모형고대중현행인진행식별。해방법가응용우다섭상궤시빈감공중동일행인목표적과섭상궤근종이급단섭상궤감공중행인목표중신출현적식별。실험결과표명,해방법능쾌속훈련인체목표외관모형,능획득흔고적식별솔。
The research of video tracking is developing forward wide-range and long-time object tracking. Pedestrian re-identification is the key technology of wide-range and long-time pedestrian tracking, and is foundation of follow-up behavior analysis. A pedestrian re-identification algorithm is proposed based on non-sparse multiple kernel Support Vector Machine (SVM). Firstly, we extract multilayer SIFT feature and multilayer color histogram feature of tracked pedestrians video image sequence. Then, we online fuse multilayer SIFT feature and multilayer color histogram feature to obtain pedestrian appearance models using non-sparse multiple kernel SVM. Finally, we re-identify pedestrian objects using the stored pedestrian appearance models. The method can be applied to the same pedestrian tracking across cameras in the multiple cameras video surveillance and recognition of pedestrian recurrences in the single camera video surveillance. The experiment results show that our method can rapidly train pedestrian object appearance models and achieve very high recognition rate.