光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2013年
9期
16-21
,共6页
秦振涛%杨武年%潘佩芬
秦振濤%楊武年%潘珮芬
진진도%양무년%반패분
稀疏表示%图像去噪%字典学习%K-SVD%高分一号
稀疏錶示%圖像去譟%字典學習%K-SVD%高分一號
희소표시%도상거조%자전학습%K-SVD%고분일호
sparse representation%image denoising%dictionary learning%K-SVD%the first satellite of high resolution
对高分辨率遥感图像进行去噪是遥感研究中的一个重要难题。本文提出了一种新的基于稀疏表示的高分辨率遥感图像去噪算法,该算法根据加噪高分辨率遥感图像的特点利用 K-SVD 算法自适应的学习得到能高效描述遥感图像内容的字典,利用稀疏表示实现去噪,并且保留原图像的有用信息。通过对“高分一号”获取的遥感图像进行实验表明,该算法能较好地滤除遥感图像的噪声,提高了图像的峰值信噪比,该方法比其他字典学习算法及其他去噪算法具有更好的性能。
對高分辨率遙感圖像進行去譟是遙感研究中的一箇重要難題。本文提齣瞭一種新的基于稀疏錶示的高分辨率遙感圖像去譟算法,該算法根據加譟高分辨率遙感圖像的特點利用 K-SVD 算法自適應的學習得到能高效描述遙感圖像內容的字典,利用稀疏錶示實現去譟,併且保留原圖像的有用信息。通過對“高分一號”穫取的遙感圖像進行實驗錶明,該算法能較好地濾除遙感圖像的譟聲,提高瞭圖像的峰值信譟比,該方法比其他字典學習算法及其他去譟算法具有更好的性能。
대고분변솔요감도상진행거조시요감연구중적일개중요난제。본문제출료일충신적기우희소표시적고분변솔요감도상거조산법,해산법근거가조고분변솔요감도상적특점이용 K-SVD 산법자괄응적학습득도능고효묘술요감도상내용적자전,이용희소표시실현거조,병차보류원도상적유용신식。통과대“고분일호”획취적요감도상진행실험표명,해산법능교호지려제요감도상적조성,제고료도상적봉치신조비,해방법비기타자전학습산법급기타거조산법구유경호적성능。
Denoising the high resolution remote sensing images is a difficult problem in the relative research field of remote sensing. A novel algorithm for denoising the high resolution remote sensing images is proposed based on sparse representation. A dictionary which has an efficient description of remote sensing image content is obtained based on K-SVD algorithm according to the characteristics of the added noise of high spatial resolution remote sensing images. Denoising is realized by using sparse representation, and the useful information of the image is kept. The experimental results of the remote sensing images obtained by“the first satellite of high resolution”show that the algorithm can filter out the noise in the image more effectively and improve the PSNR, and this method has better performance than other dictionary learning algorithms and other denoising algorithms.