电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2013年
9期
2541-2546
,共6页
李庆峰%邓桃%毛艳%李晟
李慶峰%鄧桃%毛豔%李晟
리경봉%산도%모염%리성
特高压交流输电线路%复合绝缘子耐张串%有限元%均压特性
特高壓交流輸電線路%複閤絕緣子耐張串%有限元%均壓特性
특고압교류수전선로%복합절연자내장천%유한원%균압특성
UHVAC transmission lines%composite tension insulators%finite element%optimization characteristic
交流电压作用下,由于复合绝缘子导线侧和杆塔侧的杂散电容不同,绝缘子的沿串电压分布不均匀。采用三维有限元方法分别计算了特高压交流1000 kV单回和双回输电线路一字型4联550 kN复合绝缘子耐张串的沿面电位和电场分布,比较了大环屏蔽深度、管径、外径等均压环结构参数对电场分布的影响,给出了均压环的推荐配置方案。结果表明,当中相施加相电压峰值时,各关键部位场强值最大;单回和双回耐张串均压环表面最大场强分别为2.06 kV/mm 和1.8 kV/mm,绝缘子伞裙护套表面最大场强分别为0.33 kV/mm和0.31 kV/mm,满足均压环表面场强在峰值下不超过2 kV/mm,复合绝缘子伞裙护套表面场强在有效值下不超过0.4 kV/mm的电场控制要求。
交流電壓作用下,由于複閤絕緣子導線側和桿塔側的雜散電容不同,絕緣子的沿串電壓分佈不均勻。採用三維有限元方法分彆計算瞭特高壓交流1000 kV單迴和雙迴輸電線路一字型4聯550 kN複閤絕緣子耐張串的沿麵電位和電場分佈,比較瞭大環屏蔽深度、管徑、外徑等均壓環結構參數對電場分佈的影響,給齣瞭均壓環的推薦配置方案。結果錶明,噹中相施加相電壓峰值時,各關鍵部位場彊值最大;單迴和雙迴耐張串均壓環錶麵最大場彊分彆為2.06 kV/mm 和1.8 kV/mm,絕緣子傘裙護套錶麵最大場彊分彆為0.33 kV/mm和0.31 kV/mm,滿足均壓環錶麵場彊在峰值下不超過2 kV/mm,複閤絕緣子傘裙護套錶麵場彊在有效值下不超過0.4 kV/mm的電場控製要求。
교류전압작용하,유우복합절연자도선측화간탑측적잡산전용불동,절연자적연천전압분포불균균。채용삼유유한원방법분별계산료특고압교류1000 kV단회화쌍회수전선로일자형4련550 kN복합절연자내장천적연면전위화전장분포,비교료대배병폐심도、관경、외경등균압배결구삼수대전장분포적영향,급출료균압배적추천배치방안。결과표명,당중상시가상전압봉치시,각관건부위장강치최대;단회화쌍회내장천균압배표면최대장강분별위2.06 kV/mm 화1.8 kV/mm,절연자산군호투표면최대장강분별위0.33 kV/mm화0.31 kV/mm,만족균압배표면장강재봉치하불초과2 kV/mm,복합절연자산군호투표면장강재유효치하불초과0.4 kV/mm적전장공제요구。
Due to the different stray capacitance at conductor and grounding top of composite insulators under AC voltage, the electric potential distribution along the insulators is un-uniform. The three-dimensional finite element method is used to calculate the potential distribution and electric field distribution of line-shape 4×550 kN composite tension insulators for 1 000 kV UHVAC transmission lines, where single and double circuit is calculated respectively. The impacts of structural parameters of grading ring, including shielding depth, ring diameter and tube diameter, on the distribution of electric field are compared and a recommended configuration scheme of grading ring is suggested. Calculation results show that when peak phase voltage is applied to the middle phase, the electric field strengths at key positions reach to their maximum; on single circuit 1 000 kV transmission line, the maximum electric filed strength on grading ring surface and insulator surface are 2.06 kV/mm and 0.33 kV/mm respectively, while they are 1.8 kV/mm and 0.31 kV/mm of double circuit 1 000 kV transmission lines respectively. All the calculation results under the suggested grading ring configuration meet the electric filed requirements, which are 2 kV/mm on grading ring surface under peak phase voltage and 0.4 kV/mm on insulator surface under effective value.