广西大学学报(自然科学版)
廣西大學學報(自然科學版)
엄서대학학보(자연과학판)
JOURNAL OF GUANGXI UNIVERSITY (NATURAL SCIENCE EDITION)
2013年
5期
1086-1091
,共6页
柔性制造系统%调度%遗传算法%智能体
柔性製造繫統%調度%遺傳算法%智能體
유성제조계통%조도%유전산법%지능체
flexible manufacturing system%scheduling%genetic algorithm%agent
针对柔性制造系统( FMS)一般调度方法的不足,提出基于全局黑板的多智能体调度系统,该系统建立多智能体交互过程,通过多智能体的合作快速建立调度模型,并通过优化模块对调度模型进行求解,从而获得非劣调度方案。在设计优化模块时,采用遗传算法,针对柔性制造系统调度问题的特点,改进并扩展了基于工序的编码方法,引入工序-机器的关系矩阵,从而实现解和染色体的一一对应关系,并设计算法的适值函数、选择方法、交叉和变异方法。仿真结果表明,该调度系统在求解时收敛速度快、精度较高。最后通过10个经典的柔性job-shop调度算例,与单纯使用遗传算法和禁忌搜索算法进行比较,目标值平均改善2.21%和1.04%。
針對柔性製造繫統( FMS)一般調度方法的不足,提齣基于全跼黑闆的多智能體調度繫統,該繫統建立多智能體交互過程,通過多智能體的閤作快速建立調度模型,併通過優化模塊對調度模型進行求解,從而穫得非劣調度方案。在設計優化模塊時,採用遺傳算法,針對柔性製造繫統調度問題的特點,改進併擴展瞭基于工序的編碼方法,引入工序-機器的關繫矩陣,從而實現解和染色體的一一對應關繫,併設計算法的適值函數、選擇方法、交扠和變異方法。倣真結果錶明,該調度繫統在求解時收斂速度快、精度較高。最後通過10箇經典的柔性job-shop調度算例,與單純使用遺傳算法和禁忌搜索算法進行比較,目標值平均改善2.21%和1.04%。
침대유성제조계통( FMS)일반조도방법적불족,제출기우전국흑판적다지능체조도계통,해계통건립다지능체교호과정,통과다지능체적합작쾌속건립조도모형,병통과우화모괴대조도모형진행구해,종이획득비렬조도방안。재설계우화모괴시,채용유전산법,침대유성제조계통조도문제적특점,개진병확전료기우공서적편마방법,인입공서-궤기적관계구진,종이실현해화염색체적일일대응관계,병설계산법적괄치함수、선택방법、교차화변이방법。방진결과표명,해조도계통재구해시수렴속도쾌、정도교고。최후통과10개경전적유성job-shop조도산례,여단순사용유전산법화금기수색산법진행비교,목표치평균개선2.21%화1.04%。
To overcome the shortage of general scheduling method of flexible manufacturing system ( FMS) , a multi-agent system based on genetic algorithm is proposed .This is a multi-agent interac-ting procedure which can establish a temporary schedule model by cooperation of agents via overall -blackboard for a given task and can call an optimization module to solve the model .To design opti-mization module , genetic algorithm is used .According to the characteristic of flexible manufacturing system schedule problem , a special representation of solution modified through operation-based rep-resentation is proposed .Matrix of process-machine is introduced to establish solution-chromasome relations.Fitness function and selection method , crossover and mutation operator are designed .Sim-ulation result shows that the proposed system could make a faster rate of convergence and more opti -mal solution.Finally, compared with genetic algorithm and tabu algorithm , this method makes an average improvement by 2.21% and 1.04% respectively via solving ten typical flexible job-shop schedule problems .