计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
13期
194-197
,共4页
最小均方(LMS)算法%稀疏系统%lp范数%收敛速度%稳态性
最小均方(LMS)算法%稀疏繫統%lp範數%收斂速度%穩態性
최소균방(LMS)산법%희소계통%lp범수%수렴속도%은태성
Least Mean Square(LMS)algorithm%sparse system%lp-norm%convergence rate%steady-state behaviors
针对经典最小均方(LMS)算法没有考虑冲击响应通常具有稀疏性的特点,一般的稀疏LMS算法当自适应趋于稳态时,对小系数施加过大的吸引力,导致稳态误差增大的缺点,提出对稀疏系统进行辨识的改进的l p (0<p1)范数惩罚约束的自适应算法--加权lp范数惩罚(reweighted lp-norm penalty)LMS算法。该算法的主要思想是在惩罚函数中加入一个更新权值,适当地调节吸引力的大小。计算机仿真实验结果表明了该算法的可取性,并且其在收敛速度和稳态性方面优于现有的稀疏系统辨识方法。
針對經典最小均方(LMS)算法沒有攷慮遲擊響應通常具有稀疏性的特點,一般的稀疏LMS算法噹自適應趨于穩態時,對小繫數施加過大的吸引力,導緻穩態誤差增大的缺點,提齣對稀疏繫統進行辨識的改進的l p (0<p1)範數懲罰約束的自適應算法--加權lp範數懲罰(reweighted lp-norm penalty)LMS算法。該算法的主要思想是在懲罰函數中加入一箇更新權值,適噹地調節吸引力的大小。計算機倣真實驗結果錶明瞭該算法的可取性,併且其在收斂速度和穩態性方麵優于現有的稀疏繫統辨識方法。
침대경전최소균방(LMS)산법몰유고필충격향응통상구유희소성적특점,일반적희소LMS산법당자괄응추우은태시,대소계수시가과대적흡인력,도치은태오차증대적결점,제출대희소계통진행변식적개진적l p (0<p1)범수징벌약속적자괄응산법--가권lp범수징벌(reweighted lp-norm penalty)LMS산법。해산법적주요사상시재징벌함수중가입일개경신권치,괄당지조절흡인력적대소。계산궤방진실험결과표명료해산법적가취성,병차기재수렴속도화은태성방면우우현유적희소계통변식방법。
Because the standard Least Mean Square(LMS)algorithm does not consider the sparsity of the impulse response and the general sparse LMS algorithm gives much large attraction to the small factor, leading to increased steady-state error, a new approach for sparse system identification is proposed. This new adaptive algorithm is named reweighted lp -norm penalized LMS algorithm. The main idea of this algorithm is to add an updated weight in the penalty function for appropriately adjusting attraction. The simulation results confirm the correctness of the theory, and the proposed algorithm in both convergence rate and steady-state behaviors is better than the existing sparse system identification methods.