计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
13期
191-193
,共3页
罗瑞评%张洪顺%陈勇%袁誉红
囉瑞評%張洪順%陳勇%袁譽紅
라서평%장홍순%진용%원예홍
Haar小波%滤波器系数%非零项%唯一性
Haar小波%濾波器繫數%非零項%唯一性
Haar소파%려파기계수%비령항%유일성
Haar wavelet%filter coefficient%nonzero coefficient%uniqueness
Haar小波是最简单的紧支集正交小波(Daubechies小波),其滤波器序列较短,在图像处理等诸多领域都有广泛的应用。由Daubechies小波的构造理论可知,现有的正交小波是在比较特殊的前提下得到的,则Haar小波的滤波器系数序列的唯一确定性受到质疑。以多分辨分析为基础,在时域对Haar小波滤波器系数序列的唯一性进行了论证,即证明了Haar小波滤波器序列只有两个非零项,这对促进小波的理论完善与应用研究具有十分重要的意义。
Haar小波是最簡單的緊支集正交小波(Daubechies小波),其濾波器序列較短,在圖像處理等諸多領域都有廣汎的應用。由Daubechies小波的構造理論可知,現有的正交小波是在比較特殊的前提下得到的,則Haar小波的濾波器繫數序列的唯一確定性受到質疑。以多分辨分析為基礎,在時域對Haar小波濾波器繫數序列的唯一性進行瞭論證,即證明瞭Haar小波濾波器序列隻有兩箇非零項,這對促進小波的理論完善與應用研究具有十分重要的意義。
Haar소파시최간단적긴지집정교소파(Daubechies소파),기려파기서렬교단,재도상처리등제다영역도유엄범적응용。유Daubechies소파적구조이론가지,현유적정교소파시재비교특수적전제하득도적,칙Haar소파적려파기계수서렬적유일학정성수도질의。이다분변분석위기출,재시역대Haar소파려파기계수서렬적유일성진행료론증,즉증명료Haar소파려파기서렬지유량개비령항,저대촉진소파적이론완선여응용연구구유십분중요적의의。
Haar wavelet is widely used in such areas as image processing because of its short filter coefficients, which is one of Daubechies wavelets and is also the simplest compactly orthogonal wavelet. It is known that the existing orthogonal wavelets are constructed under certain conditions according to the theories of Daubechies wavelets construction;therefore, the uniqueness of Haar wavelet filter coefficients has been queried. There is only two nonzero values of Haar wavelet filter coefficients is proved by multi-resolution analysis theory in time domain, which is beneficial for theory consummation and application research of Wavelets.