计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
14期
267-270
,共4页
范庚%马登武%张继军%邓力
範庚%馬登武%張繼軍%鄧力
범경%마등무%장계군%산력
故障诊断%相关向量机%决策树
故障診斷%相關嚮量機%決策樹
고장진단%상관향량궤%결책수
fault diagnosis%Relevance Vector Machine(RVM)%Decision Tree(DT)
针对故障诊断面临的故障样本少、非线性强、多故障处理等问题以及传统智能诊断方法存在的不足,提出了一种基于决策树(DT)和相关向量机(RVM)的智能故障诊断方法。通过构造决策二叉树,将多类分类问题分解成多个二类分类问题;在各个决策节点,利用RVM进行二类分类,从而实现RVM的多类分类。理论分析及仿真结果表明,相比支持向量机,新方法在保持高诊断正确率的同时具有更高的稀疏性和诊断效率,并且能够提供概率式输出,更具实用价值;相比OAR-RVM和OAO-RVM方法,新方法节省了训练时间,具有更高的训练效率。
針對故障診斷麵臨的故障樣本少、非線性彊、多故障處理等問題以及傳統智能診斷方法存在的不足,提齣瞭一種基于決策樹(DT)和相關嚮量機(RVM)的智能故障診斷方法。通過構造決策二扠樹,將多類分類問題分解成多箇二類分類問題;在各箇決策節點,利用RVM進行二類分類,從而實現RVM的多類分類。理論分析及倣真結果錶明,相比支持嚮量機,新方法在保持高診斷正確率的同時具有更高的稀疏性和診斷效率,併且能夠提供概率式輸齣,更具實用價值;相比OAR-RVM和OAO-RVM方法,新方法節省瞭訓練時間,具有更高的訓練效率。
침대고장진단면림적고장양본소、비선성강、다고장처리등문제이급전통지능진단방법존재적불족,제출료일충기우결책수(DT)화상관향량궤(RVM)적지능고장진단방법。통과구조결책이차수,장다류분류문제분해성다개이류분류문제;재각개결책절점,이용RVM진행이류분류,종이실현RVM적다류분류。이론분석급방진결과표명,상비지지향량궤,신방법재보지고진단정학솔적동시구유경고적희소성화진단효솔,병차능구제공개솔식수출,경구실용개치;상비OAR-RVM화OAO-RVM방법,신방법절성료훈련시간,구유경고적훈련효솔。
In view of the problems in fault diagnosis, such as small samples, nonlinear, multiple faults processing, and the defects of traditional intelligent methods, an intelligent fault diagnosis method based on Decision Tree(DT)and Relevance Vector Machine(RVM)is proposed. The DT is constructed, and the multi-class classification problem is divided into many binary classi-fication problems. RVM is used to make binary classification at every node, and then the multi-class classification of RVM is achieved. The theoretical analysis and results of application show that the proposed method has better performance in sparsity and diagnosis efficiency while keeping high accuracy compared with the traditional SVM methods, which makes it more practi-cal;and that the proposed method has a better training efficiency compared with OAR-RVM and OAO-RVM.