计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
14期
203-206
,共4页
杨爱萍%栗改%侯正信%庞茜
楊愛萍%慄改%侯正信%龐茜
양애평%률개%후정신%방천
压缩感知%结构化稀疏模型%双树复小波变换
壓縮感知%結構化稀疏模型%雙樹複小波變換
압축감지%결구화희소모형%쌍수복소파변환
Compressed Sensing(CS)%structured sparse model%dual-tree complex wavelet transform
目前,标准的CS重构算法仅利用信号和图像在小波变换下的稀疏先验信息,而并没有利用变换系数具有的结构化特性。为了能够快速精确地重建原始信号,将结构化稀疏模型与SP算法、CoSaMP算法相结合,提出了压缩感知重构的改进算法。另外,将基于双树复小波变换的系数结构模型融入上述算法,进一步提高重构性能。实验结果表明,所提出的算法可获得更高的图像重建质量。
目前,標準的CS重構算法僅利用信號和圖像在小波變換下的稀疏先驗信息,而併沒有利用變換繫數具有的結構化特性。為瞭能夠快速精確地重建原始信號,將結構化稀疏模型與SP算法、CoSaMP算法相結閤,提齣瞭壓縮感知重構的改進算法。另外,將基于雙樹複小波變換的繫數結構模型融入上述算法,進一步提高重構性能。實驗結果錶明,所提齣的算法可穫得更高的圖像重建質量。
목전,표준적CS중구산법부이용신호화도상재소파변환하적희소선험신식,이병몰유이용변환계수구유적결구화특성。위료능구쾌속정학지중건원시신호,장결구화희소모형여SP산법、CoSaMP산법상결합,제출료압축감지중구적개진산법。령외,장기우쌍수복소파변환적계수결구모형융입상술산법,진일보제고중구성능。실험결과표명,소제출적산법가획득경고적도상중건질량。
Recently, normal recovery algorithms for CS only use signal and image sparse priors under wavelet, make no use of the tree structure priors. In order to reconstruct the original signal quickly and accurately, this paper brings the tree structure sparse model into SP algorithm , CoSaMP-algorithm and gets the improved recovery algorithm for compressed sensing. Combin-ing with structured sparse model and dual-tree complex wavelet transform, a new recovery algorithm for CS is proposed. The simulated results show that the algorithm can achieve higher reconstructed image performance.