兵工自动化
兵工自動化
병공자동화
ORDNANCE INDUSTRY AUTOMATION
2014年
4期
68-70
,共3页
概率神经网络%安全预警%模式分类
概率神經網絡%安全預警%模式分類
개솔신경망락%안전예경%모식분류
probabilistic neural network%early-warning%pattern classification
针对高速公路交通事故多发点交通事故难以预测的问题,利用神经网络的非线性逼近能力,结合概率神经网络(PNN)模式分类功能建立安全预警模型。设计概率神经网络拓扑结构,给出交通状态模式类别,确定相应交通事故指标体系,概述概率神经网络的学习过程,并通过Matlab仿真实验对其性能进行了测试。结果表明:采用PNN神经网络辨识技术的网络模型预警准确率高、泛化能力强,可对高速公路交通安全进行实时监测,对有效预防和控制交通灾害的发生是完全可行的。
針對高速公路交通事故多髮點交通事故難以預測的問題,利用神經網絡的非線性逼近能力,結閤概率神經網絡(PNN)模式分類功能建立安全預警模型。設計概率神經網絡拓撲結構,給齣交通狀態模式類彆,確定相應交通事故指標體繫,概述概率神經網絡的學習過程,併通過Matlab倣真實驗對其性能進行瞭測試。結果錶明:採用PNN神經網絡辨識技術的網絡模型預警準確率高、汎化能力彊,可對高速公路交通安全進行實時鑑測,對有效預防和控製交通災害的髮生是完全可行的。
침대고속공로교통사고다발점교통사고난이예측적문제,이용신경망락적비선성핍근능력,결합개솔신경망락(PNN)모식분류공능건립안전예경모형。설계개솔신경망락탁복결구,급출교통상태모식유별,학정상응교통사고지표체계,개술개솔신경망락적학습과정,병통과Matlab방진실험대기성능진행료측시。결과표명:채용PNN신경망락변식기술적망락모형예경준학솔고、범화능력강,가대고속공로교통안전진행실시감측,대유효예방화공제교통재해적발생시완전가행적。
Traffic accidents on freeway hazardous locations are hard to predict, to solving this problem, an early-warning model was made by using the nonlinear approximation capability with the pattern classification function of the probabilistic neural network (PNN). By designed the probabilistic neural network topology structure, provided traffic state categories, determined the index system of related traffic accidents, sketched out the learning process of the probabilistic neural network, the properties were also tested via the Matlab simulation experiment. Results indicate that, the early-warning model with the PNN recognition technology achieves quite high detection accuracy, and the ability of generalization is well, can be used at freeway traffic safety real-time monitoring, and as an effective prevention and control approach against the factors causing road traffic hazards is entirely possible.