智能系统学报
智能繫統學報
지능계통학보
CAAI TRANSACTIONS ON INTELLIGENT SYSTEMS
2013年
4期
299-304
,共6页
李杨%郝志峰%谢光强%袁淦钊
李楊%郝誌峰%謝光彊%袁淦釗
리양%학지봉%사광강%원감쇠
质量度量%数据空间%数据聚合%K-均值%多维数据可视化
質量度量%數據空間%數據聚閤%K-均值%多維數據可視化
질량도량%수거공간%수거취합%K-균치%다유수거가시화
quality-metrics%data space%data aggregation%K-means%multi-dimensional data visualization
以多维数据可视化为研究对象,在质量度量模型下,采用数据聚合为基本手段,来提高多维数据可视化的图像质量。在质量度量指标驱动的框架下提出了均分K-means++数据聚合算法,在传统K-means算法的基础上,专门以数据可视化为目的对算法进行了改进,使得算法聚合得到的数据既能够较好地保持原数据的大部分特性,又能显著地提高可视化后的图像质量。仿真实验证明,在不同的数据抽象级别DAL下,无论是图像质量指标还是质量度量指标HDM(直方图差值度量)、NNM(最近邻距离度量),算法都表现出了较好的仿真结果。
以多維數據可視化為研究對象,在質量度量模型下,採用數據聚閤為基本手段,來提高多維數據可視化的圖像質量。在質量度量指標驅動的框架下提齣瞭均分K-means++數據聚閤算法,在傳統K-means算法的基礎上,專門以數據可視化為目的對算法進行瞭改進,使得算法聚閤得到的數據既能夠較好地保持原數據的大部分特性,又能顯著地提高可視化後的圖像質量。倣真實驗證明,在不同的數據抽象級彆DAL下,無論是圖像質量指標還是質量度量指標HDM(直方圖差值度量)、NNM(最近鄰距離度量),算法都錶現齣瞭較好的倣真結果。
이다유수거가시화위연구대상,재질량도량모형하,채용수거취합위기본수단,래제고다유수거가시화적도상질량。재질량도량지표구동적광가하제출료균분K-means++수거취합산법,재전통K-means산법적기출상,전문이수거가시화위목적대산법진행료개진,사득산법취합득도적수거기능구교호지보지원수거적대부분특성,우능현저지제고가시화후적도상질량。방진실험증명,재불동적수거추상급별DAL하,무론시도상질량지표환시질량도량지표HDM(직방도차치도량)、NNM(최근린거리도량),산법도표현출료교호적방진결과。
For the purpose of this research paper, we examined multi-dimensional data visualization with the quality metrics model;taking data aggregation as a basic means in order to improve the multi-dimensional visualization im-age quality. Under the quality-metrics driven framework, we put forward a data aggregation algorithm called equi-partition K-means++ based on conventional K-means, and thus, were able to improve the algorithm especially as it pertains to data visualization. The aggregated data obtained by equipartition K-means++may not only preserve most features of the original data, but also improve the image quality after visualization. Our simulation experiments show that at each value of data abstraction level ( DAL) , equipartition K-means++get good results, not only in visualiza-tion image quality but also quality metrics of histogram difference measure ( HDM ) and nearest neighbor measure ( NNM) .