西北水电
西北水電
서북수전
NORTHWEST WATER POWER
2013年
4期
81-84
,共4页
风电场%风速%预报%BP-神经网络
風電場%風速%預報%BP-神經網絡
풍전장%풍속%예보%BP-신경망락
wind farm%wind speed%forecast%BP neural network
针对风速预报中出现的资料获取困难、预报精度差等问题,文章提出采用临近历史数据的BP-神经网络风速短期预报模型,并重点对BP模型的输入层和隐含层参数进行估计。在一定范围内,枚举输入层和隐含层的参数,并采用大量数据进行模拟,同时采用SSE和MAE两种指标对模拟结果进行评价,得到了适合于风速预报的多个不同参数BP模型。同时将多个BP模型用于预报,发现预报结果精度都比较高,表明不同参数的BP模型均可用于预报且BP模型存在异参同效性。
針對風速預報中齣現的資料穫取睏難、預報精度差等問題,文章提齣採用臨近歷史數據的BP-神經網絡風速短期預報模型,併重點對BP模型的輸入層和隱含層參數進行估計。在一定範圍內,枚舉輸入層和隱含層的參數,併採用大量數據進行模擬,同時採用SSE和MAE兩種指標對模擬結果進行評價,得到瞭適閤于風速預報的多箇不同參數BP模型。同時將多箇BP模型用于預報,髮現預報結果精度都比較高,錶明不同參數的BP模型均可用于預報且BP模型存在異參同效性。
침대풍속예보중출현적자료획취곤난、예보정도차등문제,문장제출채용림근역사수거적BP-신경망락풍속단기예보모형,병중점대BP모형적수입층화은함층삼수진행고계。재일정범위내,매거수입층화은함층적삼수,병채용대량수거진행모의,동시채용SSE화MAE량충지표대모의결과진행평개,득도료괄합우풍속예보적다개불동삼수BP모형。동시장다개BP모형용우예보,발현예보결과정도도비교고,표명불동삼수적BP모형균가용우예보차BP모형존재이삼동효성。
Las the difficulty in data collection and poor precision in the wind speed forecast , the model based on BP-neural network for the short-term wind speed forecast by application of the recent historic data is proposed in the paper.Furthermore, estimates of parame-ters of the input layer and implication layer of the BP model are stressed.In a proper range, parameters of the input layer and implication layer are listed as well as data in a large quantity is applied for their simulation.Simultaneously, the simulation results are evaluated by application of SSE and MAE indicators.Therefore, the BP models with different parameters suitable for the wind speed forecast are gained.A couple of BP modes are applied for the wind speed forecast, showing that all the forecast precisions are higher.This proves that the BP models with different parameters can be applied for the wind speed forecast .They cause the same results although the parameters are different .