智能系统学报
智能繫統學報
지능계통학보
CAAI TRANSACTIONS ON INTELLIGENT SYSTEMS
2013年
4期
356-360
,共5页
陈姗姗%宁纪锋%彭艺伟%张叶
陳姍姍%寧紀鋒%彭藝偉%張葉
진산산%저기봉%팽예위%장협
高光谱图像%轻微损伤%苹果缺陷检测%波段比%不均匀二次差分
高光譜圖像%輕微損傷%蘋果缺陷檢測%波段比%不均勻二次差分
고광보도상%경미손상%평과결함검측%파단비%불균균이차차분
hyperspectral image%slight bruises%apple defect detection%band ratio%asymmetric second difference
针对苹果轻微损伤时,基于可见光的机器视觉方法难以有效检测的缺点,开展了近红外高光谱图像的苹果轻微损伤检测研究。首先,用900~1700 nm近红外波段范围对轻微损伤苹果高光谱成像,图像显示损伤部分与正常部分区别明显。其次,采用特征波段比方法和不均匀二次差分方法对损伤苹果光谱图像进行处理,增强损伤处与正常位置的可分性。最后,利用3种分割方案,对损伤部分进行自动分割。对50个含轻微损伤和正常的苹果进行分割,实验结果表明,不均匀二次差分方法的损伤检测准确率为92%,比主成分分析法和波段比方法具有更高的检测准确率,为轻微损伤苹果的准确检测提供了一种新的方法。
針對蘋果輕微損傷時,基于可見光的機器視覺方法難以有效檢測的缺點,開展瞭近紅外高光譜圖像的蘋果輕微損傷檢測研究。首先,用900~1700 nm近紅外波段範圍對輕微損傷蘋果高光譜成像,圖像顯示損傷部分與正常部分區彆明顯。其次,採用特徵波段比方法和不均勻二次差分方法對損傷蘋果光譜圖像進行處理,增彊損傷處與正常位置的可分性。最後,利用3種分割方案,對損傷部分進行自動分割。對50箇含輕微損傷和正常的蘋果進行分割,實驗結果錶明,不均勻二次差分方法的損傷檢測準確率為92%,比主成分分析法和波段比方法具有更高的檢測準確率,為輕微損傷蘋果的準確檢測提供瞭一種新的方法。
침대평과경미손상시,기우가견광적궤기시각방법난이유효검측적결점,개전료근홍외고광보도상적평과경미손상검측연구。수선,용900~1700 nm근홍외파단범위대경미손상평과고광보성상,도상현시손상부분여정상부분구별명현。기차,채용특정파단비방법화불균균이차차분방법대손상평과광보도상진행처리,증강손상처여정상위치적가분성。최후,이용3충분할방안,대손상부분진행자동분할。대50개함경미손상화정상적평과진행분할,실험결과표명,불균균이차차분방법적손상검측준학솔위92%,비주성분분석법화파단비방법구유경고적검측준학솔,위경미손상평과적준학검측제공료일충신적방법。
A research of apple slight bruises was conducted by using hyperspectral images, aimed at solving the dif-ficulty of the traditional defect detection method of machine vision. This study is in part based on the fact that visi-ble light faces great challenges on it. First, the hyperspectral images of slight bruise apples between 900 and 1 700 nm are acquired by a hyperspectral imaging system. It can be found that the differences between the normal part and the bruise part are obvious. Next, we analyzed the hyperspectral images via the feature band ratio method and asymmetric second difference method to improve the divisibility of the normal part and the bruise part. Finally, the bruise parts were automatically segmented from the normal part with three defect detection methods. The experi-mental results show that the accuracy of detecting slight bruises on the 50 apples using asymmetric second difference method is 92%, which is higher than the principal component analysis and band ratio methods. Therefore, the work provides a new method to detect the slight bruise apples accurately.