海军航空工程学院学报
海軍航空工程學院學報
해군항공공정학원학보
JOURNAL OF NAVAL AERONAUTICAL ENGINEERING INSTITUTE
2013年
4期
457-460
,共4页
终值问题%拟上下解%单调迭代
終值問題%擬上下解%單調迭代
종치문제%의상하해%단조질대
terminal value problem%quasi-upper and lower solutions%monotone iteration
利用拟上下解方法,研究了一阶微分方程终值问题u′(t)=f (t,u(t)),u(T)=xT拟解的存在性,并通过构造单调迭代序列得到该终值问题的最大最小拟解。
利用擬上下解方法,研究瞭一階微分方程終值問題u′(t)=f (t,u(t)),u(T)=xT擬解的存在性,併通過構造單調迭代序列得到該終值問題的最大最小擬解。
이용의상하해방법,연구료일계미분방정종치문제u′(t)=f (t,u(t)),u(T)=xT의해적존재성,병통과구조단조질대서렬득도해종치문제적최대최소의해。
By using the method of quasi-upper and lower solutions, the existence of quasi-solutions to terminal value problem of one-order differential equation u′(t)=f (t,u(t)),u(T)=xT was studied. The maximum-minimum quasi-solution-pair was obtained by constructing two monotone iteration sequences.