海军航空工程学院学报
海軍航空工程學院學報
해군항공공정학원학보
JOURNAL OF NAVAL AERONAUTICAL ENGINEERING INSTITUTE
2013年
4期
414-418
,共5页
寿命预测%退化轨迹%粒子群优化-基于神经网络函数%伪寿命
壽命預測%退化軌跡%粒子群優化-基于神經網絡函數%偽壽命
수명예측%퇴화궤적%입자군우화-기우신경망락함수%위수명
lifetime prediction%degradation path%APSO-RBFNN%pseudo lifetime
针对部分高可靠性产品退化规律无法掌握的难题,提出了使用改进粒子群优化-基于神经网络函数(PSO-RBFNN)算法拟合样品退化轨迹、预测伪寿命值的方法。首先,通过改进PSO算法对RBFNN进行训练优化;然后,使用部分测量数据对训练后的RBFNN进行准确度测试;最后,通过RBFNN预测样品退化轨迹,估计出伪寿命值。使用某型电连接器的加速退化试验数据对提出的方法进行了试验验证,成功对该型电连接器进行了寿命预测,得出平均寿命为200412 h。
針對部分高可靠性產品退化規律無法掌握的難題,提齣瞭使用改進粒子群優化-基于神經網絡函數(PSO-RBFNN)算法擬閤樣品退化軌跡、預測偽壽命值的方法。首先,通過改進PSO算法對RBFNN進行訓練優化;然後,使用部分測量數據對訓練後的RBFNN進行準確度測試;最後,通過RBFNN預測樣品退化軌跡,估計齣偽壽命值。使用某型電連接器的加速退化試驗數據對提齣的方法進行瞭試驗驗證,成功對該型電連接器進行瞭壽命預測,得齣平均壽命為200412 h。
침대부분고가고성산품퇴화규률무법장악적난제,제출료사용개진입자군우화-기우신경망락함수(PSO-RBFNN)산법의합양품퇴화궤적、예측위수명치적방법。수선,통과개진PSO산법대RBFNN진행훈련우화;연후,사용부분측량수거대훈련후적RBFNN진행준학도측시;최후,통과RBFNN예측양품퇴화궤적,고계출위수명치。사용모형전련접기적가속퇴화시험수거대제출적방법진행료시험험증,성공대해형전련접기진행료수명예측,득출평균수명위200412 h。
According to the problem that the degradation rule of some high-reliability production cannot be acqur-ied, the APSO-RBFNN algorithm, which was ued to fit the degradation path and predict the pseudo lifetime, was proposed. Firstly, RBFNN was trained and optimized through APSO. Then, the accuracy of trained RBFNN was tested with parts of measurements. Lastly, the RBFNN was applied to predict the degradation path of pro-duction and then evaluating the lifetimes. The proposed approach was methodologically explained and experimen-tally was evaluated using accelerated degradation data of some electrical connector. The lifetime of electrical con-nector was successfully predicted and the average lifetime was obtained, 200412 hours.