桂林电子科技大学学报
桂林電子科技大學學報
계림전자과기대학학보
JOURNAL OF GUILIN UNIVERSITY OF ELECTRONIC TECHNOLOGY
2014年
3期
239-244
,共6页
对称半正定矩阵%低秩逼近%乘性迭代算法
對稱半正定矩陣%低秩逼近%乘性迭代算法
대칭반정정구진%저질핍근%승성질대산법
symmetric positive semi-definite matrix%low rank approximation%multiplicative iterative algorithm
为求解对称半正定矩阵低秩逼近问题,基于矩阵的满秩分解和非负矩阵分解算法,构造了一种新的乘性迭代算法,并给出了新算法的收敛性定理。数值实验表明,与Cadzow算法相比,新算法更可行高效。
為求解對稱半正定矩陣低秩逼近問題,基于矩陣的滿秩分解和非負矩陣分解算法,構造瞭一種新的乘性迭代算法,併給齣瞭新算法的收斂性定理。數值實驗錶明,與Cadzow算法相比,新算法更可行高效。
위구해대칭반정정구진저질핍근문제,기우구진적만질분해화비부구진분해산법,구조료일충신적승성질대산법,병급출료신산법적수렴성정리。수치실험표명,여Cadzow산법상비,신산법경가행고효。
In order to solve the low rank approximation of the symmetric positive semi-definite matrix,a new multiplicative iterative algorithm is constructed based on the full rank factorization of the matrix and the algorithm for the non-negative matrix factorization,the convergence theorem for the proposed algorithm is given.Numerical experiments show that com-pared with the Cadzow algorithm,the new algorithm is feasible and efficient.