计算机仿真
計算機倣真
계산궤방진
COMPUTER SIMULATION
2014年
5期
288-292
,共5页
穆晓霞%李钧涛%陈留院
穆曉霞%李鈞濤%陳留院
목효하%리균도%진류원
支持向量机%最小二乘双支持向量机%加权支持向量机
支持嚮量機%最小二乘雙支持嚮量機%加權支持嚮量機
지지향량궤%최소이승쌍지지향량궤%가권지지향량궤
Support vector machines( SVM)%Least squares twin support vector machines%Weighted support vec-tor machines
针对最小二乘双支持向量机对噪声样本敏感的问题,依据给含有大噪声的样本赋予较小权重、给较小噪声的样本赋予较大权重的原则,通过评估训练样本点到两个非平行分类超平面的距离,构造了能反映样本噪声程度的权重,提出了线性和非线性加权最小二乘双支持向量机,并发展了两种加权支持向量机的求解算法,解决了对含噪声样本的高精度分类问题。将所提两种加权最小二乘双支持向量机分别应用到Heart-statlog和Two-moons数据集上进行仿真,结果表明所提方法有效消除了噪声的影响,提高了分类精度。
針對最小二乘雙支持嚮量機對譟聲樣本敏感的問題,依據給含有大譟聲的樣本賦予較小權重、給較小譟聲的樣本賦予較大權重的原則,通過評估訓練樣本點到兩箇非平行分類超平麵的距離,構造瞭能反映樣本譟聲程度的權重,提齣瞭線性和非線性加權最小二乘雙支持嚮量機,併髮展瞭兩種加權支持嚮量機的求解算法,解決瞭對含譟聲樣本的高精度分類問題。將所提兩種加權最小二乘雙支持嚮量機分彆應用到Heart-statlog和Two-moons數據集上進行倣真,結果錶明所提方法有效消除瞭譟聲的影響,提高瞭分類精度。
침대최소이승쌍지지향량궤대조성양본민감적문제,의거급함유대조성적양본부여교소권중、급교소조성적양본부여교대권중적원칙,통과평고훈련양본점도량개비평행분류초평면적거리,구조료능반영양본조성정도적권중,제출료선성화비선성가권최소이승쌍지지향량궤,병발전료량충가권지지향량궤적구해산법,해결료대함조성양본적고정도분류문제。장소제량충가권최소이승쌍지지향량궤분별응용도Heart-statlog화Two-moons수거집상진행방진,결과표명소제방법유효소제료조성적영향,제고료분류정도。
This paper aimed to overcome the influence of the noise on the least squares twin support vector ma-chine. Following the principle that gives the samples containing large noise smaller weights and the samples contai-ning small noise larger weights, the weights reflecting the noise level in samples were first proposed by evaluating the distances from the training samples to the two nonparallel separating hyperplanes. By using the proposed weights, the linear and nonlinear weighted least squares twin support vector machines were presented and the corresponding solving algorithms were developed. The proposed weighted least squares twin support vector machines were applied to the Heart-statlog data and Two-moons data. The simulation results show that the proposed methods can remove the influ-ence of the noise and improve the classification accuracy.