物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2014年
5期
965-972
,共8页
负载催化剂%静电自组装%贵金属纳米颗粒%TiO2纳米结构薄膜%光催化活性
負載催化劑%靜電自組裝%貴金屬納米顆粒%TiO2納米結構薄膜%光催化活性
부재최화제%정전자조장%귀금속납미과립%TiO2납미결구박막%광최화활성
Supported catalyst%Electrostatic self-assembly%Noble metal nanoparticle%TiO2 nanostructured film%Photocatalytic activity
以碱-水热法在金属Ti片上原位生长了TiO2纳米结构(纳米花和纳米线)薄膜,并采用低温静电自组装方法将超细贵金属(金、铂、钯)纳米颗粒均匀沉积于多孔TiO2薄膜上.负载于Ti片上的贵金属/TiO2纳米结构薄膜具有一体化结构、多孔架构和高光催化活性.超高分辨率场发射扫描电子显微镜(FESEM)直接观察表明贵金属纳米颗粒在TiO2表面分布均匀,且颗粒之间相互分离,金、铂、钯纳米颗粒的平均粒径分别约为4.0、2.0和10.0 nm.俄歇电子能谱(AES)纵深成分分析表明贵金属不仅沉积于薄膜表面,且大量分布于 TiO2纳米结构薄膜内部,其深度超过580 nm. X射线光电子能谱(XPS)分析表明,经300°C下在空气中热处理后,纳米金仍保持金属态,纳米铂部分被氧化成 PtOabs,而钯粒子则完全被氧化成氧化钯(PdO).以低温静电自组装法沉积贵金属,贵金属负载量可通过调节组装时间与溶胶pH值来控制.光催化降解甲基橙的结果表明,沉积的纳米金和铂能显著增加TiO2纳米结构薄膜的光催化活性,说明金和铂粒子可促进光生载流子的分离;但负载的PdO对TiO2薄膜的光催化性能增强几乎无作用.
以堿-水熱法在金屬Ti片上原位生長瞭TiO2納米結構(納米花和納米線)薄膜,併採用低溫靜電自組裝方法將超細貴金屬(金、鉑、鈀)納米顆粒均勻沉積于多孔TiO2薄膜上.負載于Ti片上的貴金屬/TiO2納米結構薄膜具有一體化結構、多孔架構和高光催化活性.超高分辨率場髮射掃描電子顯微鏡(FESEM)直接觀察錶明貴金屬納米顆粒在TiO2錶麵分佈均勻,且顆粒之間相互分離,金、鉑、鈀納米顆粒的平均粒徑分彆約為4.0、2.0和10.0 nm.俄歇電子能譜(AES)縱深成分分析錶明貴金屬不僅沉積于薄膜錶麵,且大量分佈于 TiO2納米結構薄膜內部,其深度超過580 nm. X射線光電子能譜(XPS)分析錶明,經300°C下在空氣中熱處理後,納米金仍保持金屬態,納米鉑部分被氧化成 PtOabs,而鈀粒子則完全被氧化成氧化鈀(PdO).以低溫靜電自組裝法沉積貴金屬,貴金屬負載量可通過調節組裝時間與溶膠pH值來控製.光催化降解甲基橙的結果錶明,沉積的納米金和鉑能顯著增加TiO2納米結構薄膜的光催化活性,說明金和鉑粒子可促進光生載流子的分離;但負載的PdO對TiO2薄膜的光催化性能增彊幾乎無作用.
이감-수열법재금속Ti편상원위생장료TiO2납미결구(납미화화납미선)박막,병채용저온정전자조장방법장초세귀금속(금、박、파)납미과립균균침적우다공TiO2박막상.부재우Ti편상적귀금속/TiO2납미결구박막구유일체화결구、다공가구화고광최화활성.초고분변솔장발사소묘전자현미경(FESEM)직접관찰표명귀금속납미과립재TiO2표면분포균균,차과립지간상호분리,금、박、파납미과립적평균립경분별약위4.0、2.0화10.0 nm.아헐전자능보(AES)종심성분분석표명귀금속불부침적우박막표면,차대량분포우 TiO2납미결구박막내부,기심도초과580 nm. X사선광전자능보(XPS)분석표명,경300°C하재공기중열처리후,납미금잉보지금속태,납미박부분피양화성 PtOabs,이파입자칙완전피양화성양화파(PdO).이저온정전자조장법침적귀금속,귀금속부재량가통과조절조장시간여용효pH치래공제.광최화강해갑기등적결과표명,침적적납미금화박능현저증가TiO2납미결구박막적광최화활성,설명금화박입자가촉진광생재류자적분리;단부재적PdO대TiO2박막적광최화성능증강궤호무작용.
Photoactive TiO2 nanostructured films (i.e., nanoflowers and nanowires) have been directly synthesized on Ti sheets using an alkali-hydrothermal route. Ultrafine noble metals (i.e., Au, Pt, Pd) nanoparticles (NPs) were homogenously dispersed onto the TiO2 nanostructures using a facile low temperature electrostatic self-assembly approach. The resulting noble-metal/TiO2-nanostructured films supported on Ti sheets had an al -in-one structure with al of the virtues of a porous framework and enhanced photocatalytic activity. Ultra high-resolution field-emission scanning electron microscopy (FESEM) revealed that the noble metal NPs were uniformly dispersed on the TiO2 surface with good physical separation properties. The average sizes of the loaded Au, Pt, and Pd NPs were approximately 4.0, 2.0, and 10.0 nm, respectively. Noble metal NPs were deposited not only on the film surface but also in the interior framework of the TiO2 films with a depth of more than 580 nm, as revealed by Auger electron spectroscopic (AES) in-depth profiling analysis. X-ray photoelectron spectroscopy (XPS) analysis revealed that the Pt and Pd NPs had been partial y oxidized to PtOabs and immobicompletely oxidized to PdO, respectively, whereas the Au NPs remained in a metallic state after being annealed in air at 300 °C. During the electrostatic self-assembly process, the loading of the noble metal can be adjusted by controlling the assembly time and the colloidal pH value. The degradation of aqueous methyl orange showed that the Au/TiO2 (or Pt/TiO2)-nanostructured films possessed remarkably enhanced photocatalytic activity compared with pure TiO2 films, and revealed that the metal NPs played a positive role in separating photogenerated hole-electron pairs. However, the deposited PdO species had no discernible impact on the activity of the TiO2 nanostructures.