物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2014年
5期
891-898
,共8页
陈辉%陈丹%谢伟淼%郑翔%李国华
陳輝%陳丹%謝偉淼%鄭翔%李國華
진휘%진단%사위묘%정상%리국화
碳化钨%碳化钨铁%核壳结构%电催化活性%调控
碳化鎢%碳化鎢鐵%覈殼結構%電催化活性%調控
탄화오%탄화오철%핵각결구%전최화활성%조공
Tungsten carbide%Tungsten-iron carbide%Core-shel structure%Electrocatalytic activity%Adjusting
以铁黄为载体,偏钨酸铵为钨源,将直接包覆与原位还原碳化技术相结合制备了碳化钨/碳化钨铁复合材料。经X射线衍射(XRD)分析和透射电子显微镜(TEM)观察,复合材料的主要物相为碳化钨铁(Fe3W3C)、碳化钨(WC)和碳化二钨(W2C),且构成了以Fe3W3C为核、WC和W2C为壳的核壳结构。采用三电极体系循环伏安法测试了复合材料在酸性、中性和碱性体系中对甲醇的电催化氧化活性。结果表明,与颗粒状碳化钨和介孔空心球状碳化钨相比,复合材料的电催化活性有了明显的提高;进一步研究发现,复合材料的电催化活性不仅受到体系性质的影响,还与其物相组成和微结构相关。上述结果说明,通过控制复合材料的物相组成及微结构,以及反应体系的性质可实现对其电催化活性的调控;同时表明,核壳结构是提高碳化钨催化材料活性的有效途径之一。
以鐵黃為載體,偏鎢痠銨為鎢源,將直接包覆與原位還原碳化技術相結閤製備瞭碳化鎢/碳化鎢鐵複閤材料。經X射線衍射(XRD)分析和透射電子顯微鏡(TEM)觀察,複閤材料的主要物相為碳化鎢鐵(Fe3W3C)、碳化鎢(WC)和碳化二鎢(W2C),且構成瞭以Fe3W3C為覈、WC和W2C為殼的覈殼結構。採用三電極體繫循環伏安法測試瞭複閤材料在痠性、中性和堿性體繫中對甲醇的電催化氧化活性。結果錶明,與顆粒狀碳化鎢和介孔空心毬狀碳化鎢相比,複閤材料的電催化活性有瞭明顯的提高;進一步研究髮現,複閤材料的電催化活性不僅受到體繫性質的影響,還與其物相組成和微結構相關。上述結果說明,通過控製複閤材料的物相組成及微結構,以及反應體繫的性質可實現對其電催化活性的調控;同時錶明,覈殼結構是提高碳化鎢催化材料活性的有效途徑之一。
이철황위재체,편오산안위오원,장직접포복여원위환원탄화기술상결합제비료탄화오/탄화오철복합재료。경X사선연사(XRD)분석화투사전자현미경(TEM)관찰,복합재료적주요물상위탄화오철(Fe3W3C)、탄화오(WC)화탄화이오(W2C),차구성료이Fe3W3C위핵、WC화W2C위각적핵각결구。채용삼전겁체계순배복안법측시료복합재료재산성、중성화감성체계중대갑순적전최화양화활성。결과표명,여과립상탄화오화개공공심구상탄화오상비,복합재료적전최화활성유료명현적제고;진일보연구발현,복합재료적전최화활성불부수도체계성질적영향,환여기물상조성화미결구상관。상술결과설명,통과공제복합재료적물상조성급미결구,이급반응체계적성질가실현대기전최화활성적조공;동시표명,핵각결구시제고탄화오최화재료활성적유효도경지일。
A tungsten carbide and tungsten-iron carbide composite with a core-shel structure was prepared through a combination of surface coating and in situ reduction-carbonization, using ammonium metatungstate as the tungsten source and iron hydroxide as the iron source. The main crystal phases of the composite were tungsten-iron carbide (Fe3W3C), monotungsten carbide (WC), and bitungsten carbide (W2C). In the core-shel composite, Fe3W3C formed the core, and the shel consisted of WC and W2C. The electrocatalytic activity for methanol oxidation of the composite was measured by cyclic voltammetry with a three-electrode system in acidic, neutral, and alkaline aqueous solutions. The results show that the electrocatalytic activity of the composite is higher than those of tungsten carbide particles and mesoporous hol ow microspheres. The activity is affected by the properties of the solution in which the reaction is performed, and is related to the crystal phase and microstructure of the composite. These results indicate that the electrocatalytic activity of tungsten carbide can be adjusted by changing the properties of the reaction solution and control ed by adjusting the crystal phase and microstructure of the composite. Furthermore, the activity can be improved through formation of a core-shel structure; this is an efficient way to improve the electrocatalytic activity of tungsten carbide.