物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2014年
5期
873-880
,共8页
王时茂%董伟伟%方晓东%邓赞红%邵景珍%胡林华%朱俊
王時茂%董偉偉%方曉東%鄧讚紅%邵景珍%鬍林華%硃俊
왕시무%동위위%방효동%산찬홍%소경진%호림화%주준
量子点敏化太阳电池%光阳极%二氧化钛%纳米棒阵列%修饰%电子传输
量子點敏化太暘電池%光暘極%二氧化鈦%納米棒陣列%脩飾%電子傳輸
양자점민화태양전지%광양겁%이양화태%납미봉진렬%수식%전자전수
Quantum dot-sensitized solar cel%Photoanode%Titanium dioxide%Nanorod array%Modification%Electron transport
使用TiCl4溶液对单晶TiO2纳米棒阵列(TNRs)进行修饰,通过在TiO2纳米棒表面合成TiO2纳米颗粒来提高TNRs的表面积,提高TNRs对量子点的吸附能力,并在此基础上研究了TiCl4修饰时间对基于单晶TNRs的CdS/CdSe量子点敏化太阳电池光伏性能的影响,同时结合强度调制光电流谱(IMPS)研究了TiO2纳米棒阵列的电子传输性能.结果表明: TiCl4修饰可以大幅提高基于单晶TNRs的CdS/CdSe量子点敏化太阳电池的光伏性能,在TiCl4修饰时间为60 h时,其短路电流密度和光电转换效率分别由修饰前的(2.93±0.07) mA?cm-2和0.36%±0.02%提高至(8.19±0.12) mA?cm-2和1.17%±0.07%.同时, IMPS测试表明电子在单晶TiO2纳米棒阵列中的传输速率高于在TiO2纳米颗粒薄膜中的传输速率,证明了单晶TiO2纳米棒阵列在电子传输方面的优越性.
使用TiCl4溶液對單晶TiO2納米棒陣列(TNRs)進行脩飾,通過在TiO2納米棒錶麵閤成TiO2納米顆粒來提高TNRs的錶麵積,提高TNRs對量子點的吸附能力,併在此基礎上研究瞭TiCl4脩飾時間對基于單晶TNRs的CdS/CdSe量子點敏化太暘電池光伏性能的影響,同時結閤彊度調製光電流譜(IMPS)研究瞭TiO2納米棒陣列的電子傳輸性能.結果錶明: TiCl4脩飾可以大幅提高基于單晶TNRs的CdS/CdSe量子點敏化太暘電池的光伏性能,在TiCl4脩飾時間為60 h時,其短路電流密度和光電轉換效率分彆由脩飾前的(2.93±0.07) mA?cm-2和0.36%±0.02%提高至(8.19±0.12) mA?cm-2和1.17%±0.07%.同時, IMPS測試錶明電子在單晶TiO2納米棒陣列中的傳輸速率高于在TiO2納米顆粒薄膜中的傳輸速率,證明瞭單晶TiO2納米棒陣列在電子傳輸方麵的優越性.
사용TiCl4용액대단정TiO2납미봉진렬(TNRs)진행수식,통과재TiO2납미봉표면합성TiO2납미과립래제고TNRs적표면적,제고TNRs대양자점적흡부능력,병재차기출상연구료TiCl4수식시간대기우단정TNRs적CdS/CdSe양자점민화태양전지광복성능적영향,동시결합강도조제광전류보(IMPS)연구료TiO2납미봉진렬적전자전수성능.결과표명: TiCl4수식가이대폭제고기우단정TNRs적CdS/CdSe양자점민화태양전지적광복성능,재TiCl4수식시간위60 h시,기단로전류밀도화광전전환효솔분별유수식전적(2.93±0.07) mA?cm-2화0.36%±0.02%제고지(8.19±0.12) mA?cm-2화1.17%±0.07%.동시, IMPS측시표명전자재단정TiO2납미봉진렬중적전수속솔고우재TiO2납미과립박막중적전수속솔,증명료단정TiO2납미봉진렬재전자전수방면적우월성.
Single-crystal TiO2 nanorod arrays (TNRs) are proposed to increase the electron transport rate and improve the cellperformance of quantum dot-sensitized solar cells (QDSCs). However, the specific surface area of TNRs is much lower than that of TiO2 nanoparticle films, which leads to lower quantum dot adsorption and lower power conversion efficiency (η). In our investigation, TiCl4 solution was used to modify single-crystal rutile TNRs. The modification resulted in the synthesis of a large number of TiO2 nanoparticles on the surfaces of nanorods, which significantly increased the surface area and quantum dot adsorption of TNRs. When the TiCl4 modification time was 60 h, the short-circuit photocurrent density (Jsc) and η of TNRs based CdS/CdSe co-sensitized QDSCs increased from (2.93±0.07) mA?cm-2 and 0.36%±0.02% to (8.19± 0.12) mA?cm-2 and 1.17%±0.07%, respectively. In addition, intensity modulated photocurrent spectroscopy measurements indicated that the electron transport rate in modified single-crystal rutile TNRs is faster than that in anatase TiO2 nanoparticle films, which is a desirable result.