兰州大学学报(自然科学版)
蘭州大學學報(自然科學版)
란주대학학보(자연과학판)
JOURNAL OF LANZHOU UNIVERSITY(NATURAL SCIENCES)
2013年
4期
437-447
,共11页
WRF%GLDAS%降水数据%黑河上游
WRF%GLDAS%降水數據%黑河上遊
WRF%GLDAS%강수수거%흑하상유
WRF%GLDAS%precipitation data%upper Heihe River basin
参考黑河上游4站点的观测数据,用包含多统计指标的全面评价方法评价了2004?2009年WRF制备的5 km,1 h降水数据和空间插值后的5 km,3 h GLDAS降水数据。结果表明两者对降雨的时空分布表现均优。 WRF产生的<1 mm和>8 mm降水的总日数、总量更符合实际降水情况,但缺少1~8 mm的降水,春季降水峰值偏大,总降水日数偏少。 GLDAS降水和观测的相关系数更高,但年降水量偏少;<1 mm降水日数、总量过多,>2 mm降水日数偏少,春季降水峰值过大。由此两组数据驱动模型模拟时,需考虑数据本身的特点,同时黑河流域仍迫切需要更精确的降水数据。
參攷黑河上遊4站點的觀測數據,用包含多統計指標的全麵評價方法評價瞭2004?2009年WRF製備的5 km,1 h降水數據和空間插值後的5 km,3 h GLDAS降水數據。結果錶明兩者對降雨的時空分佈錶現均優。 WRF產生的<1 mm和>8 mm降水的總日數、總量更符閤實際降水情況,但缺少1~8 mm的降水,春季降水峰值偏大,總降水日數偏少。 GLDAS降水和觀測的相關繫數更高,但年降水量偏少;<1 mm降水日數、總量過多,>2 mm降水日數偏少,春季降水峰值過大。由此兩組數據驅動模型模擬時,需攷慮數據本身的特點,同時黑河流域仍迫切需要更精確的降水數據。
삼고흑하상유4참점적관측수거,용포함다통계지표적전면평개방법평개료2004?2009년WRF제비적5 km,1 h강수수거화공간삽치후적5 km,3 h GLDAS강수수거。결과표명량자대강우적시공분포표현균우。 WRF산생적<1 mm화>8 mm강수적총일수、총량경부합실제강수정황,단결소1~8 mm적강수,춘계강수봉치편대,총강수일수편소。 GLDAS강수화관측적상관계수경고,단년강수량편소;<1 mm강수일수、총량과다,>2 mm강수일수편소,춘계강수봉치과대。유차량조수거구동모형모의시,수고필수거본신적특점,동시흑하류역잉박절수요경정학적강수수거。
A comprehensive comparative evaluating approach, consisting of a set of statistical indicators and comparisons against in situ observations from four established meteorological sites in the upper Heihe River basin, was proposed in this study. Hourly WRF precipitation and 3 h GLDAS precipitation in the same 5 km resolution, the latter being interpolated, were evaluated in the period of 2004?2009. It was shown that both the WRF and GLDAS data had well captured the time and spatial distribution characteristics of precipitation. WRF data were closer to observed precipitation in representing<1 mm and>8 mm precipitation in terms of annual rainy days and annual total amount. But WRF detected less 1~8 mm precipitation, larger peaks in spring, and fewer total rainy days. GLDAS precipitation had a higher correlation and less annual total amount to that observed, overestimated rainy days and the amount for<1 mm events and generally underestimated rainy days for >2 mm. GLDAS data also detected larger peaks in spring. It is necessary to take the characteristics of the two datasets into account when they are used for the model. Meanwhile, it is urgent to produce more accurate precipitation data to meet the demands from eco-hydrological studies in HRB.