兵器材料科学与工程
兵器材料科學與工程
병기재료과학여공정
Ordnance Material Science and Engineering
2013年
5期
9-12
,共4页
赵龙志%焦宇%杨敏%赵明娟
趙龍誌%焦宇%楊敏%趙明娟
조룡지%초우%양민%조명연
铝基复合材料%双粒径SiC颗粒%搅拌温度%微观组织%力学特性
鋁基複閤材料%雙粒徑SiC顆粒%攪拌溫度%微觀組織%力學特性
려기복합재료%쌍립경SiC과립%교반온도%미관조직%역학특성
aluminum matrix composites%double particle sizes SiC%stirring temperature%microstructure%mechanical properties
采用搅拌熔铸法制备双粒径SiCp/Al复合材料,利用扫描电镜(SEM)、电子万能试验机研究搅拌温度对复合材料的微观结构以及力学特性的影响。结果表明:SiC含量随着搅拌温度的升高而增加,在585℃两种粒径混合的SiC颗粒弥散分布在基体上,随温度继续升高,基体出现明显的贫SiC区域;复合材料的抗压强度、抗弯强度以及最大弯曲挠度均随着搅拌温度的升高先增大后减小,在585℃达到最大值,力学特性较纯铝、单一粒径的SiCp/ZL107复合材料有明显提高。SiC颗粒的分布以及界面结合强度决定复合材料的断裂机制。
採用攪拌鎔鑄法製備雙粒徑SiCp/Al複閤材料,利用掃描電鏡(SEM)、電子萬能試驗機研究攪拌溫度對複閤材料的微觀結構以及力學特性的影響。結果錶明:SiC含量隨著攪拌溫度的升高而增加,在585℃兩種粒徑混閤的SiC顆粒瀰散分佈在基體上,隨溫度繼續升高,基體齣現明顯的貧SiC區域;複閤材料的抗壓彊度、抗彎彊度以及最大彎麯撓度均隨著攪拌溫度的升高先增大後減小,在585℃達到最大值,力學特性較純鋁、單一粒徑的SiCp/ZL107複閤材料有明顯提高。SiC顆粒的分佈以及界麵結閤彊度決定複閤材料的斷裂機製。
채용교반용주법제비쌍립경SiCp/Al복합재료,이용소묘전경(SEM)、전자만능시험궤연구교반온도대복합재료적미관결구이급역학특성적영향。결과표명:SiC함량수착교반온도적승고이증가,재585℃량충립경혼합적SiC과립미산분포재기체상,수온도계속승고,기체출현명현적빈SiC구역;복합재료적항압강도、항만강도이급최대만곡뇨도균수착교반온도적승고선증대후감소,재585℃체도최대치,역학특성교순려、단일립경적SiCp/ZL107복합재료유명현제고。SiC과립적분포이급계면결합강도결정복합재료적단렬궤제。
SiCp/ZL107 composites with two particle sizes were prepared by stirring casting. The influence of stirring temperature on microstructure and mechanical properties of the composites was investigated by scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and electronic universal testing machine. The results show that the content of SiC increases with the increase of stirring temperature,and the SiC particles with two particle sizes are diffusely distributed on the substrate when the stirring temperature is 585℃. There is an obvious poor SiC region with the continuous increase of stirring temperature. The compressive strength,flexural strength,and maximum deflection of composites along with the stirring temperature increases first and then decreases,reaches its maximum at 585 ℃. Compared with the pure aluminum and single particle size SiCp/ZL107 composites,the mechanical properties of two particle sizes SiCp/ZL107 composites increase significantly. The failure mechanism of the composites is determined by the distribution of SiC and the interfacial bonding strength.