岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2013年
9期
2482-2488
,共7页
斜坡%岩性%岩体结构%天然波%正弦波%加速度响应
斜坡%巖性%巖體結構%天然波%正絃波%加速度響應
사파%암성%암체결구%천연파%정현파%가속도향응
slope%lithology%rock structure%real waves%sine waves%acceleration responses
斜坡岩体的岩性及岩体结构是斜坡在地震作用下产生变形破坏的主要控制因素。基于振动台模型试验,对4个斜坡模型探讨了这2个因素对斜坡地震动力响应的影响。岩性包括强度相对较高的硬岩和强度相对较低的软岩,对这两种岩性的斜坡又分别考虑了不含结构面的均质斜坡和含水平层状结构面的斜坡。基于传感器采集到的大量数据,以主频相近的天然地震波和10 Hz正弦波加载为分析工况,获得了以下几点认识:(1)4个模型斜坡坡面和坡内的水平向加速度均具有高程放大效应,尤其是软岩斜坡坡顶放大效应最显著;(2)软岩斜坡对水平向加速度的高程放大效应强于硬岩斜坡,尤其是在均质斜坡中表现最显著,均质软岩斜坡的高程放大效应呈现出明显的非线性特征;(3)当加载方向与水平层面平行时,含水平层状结构面的斜坡比均质斜坡产生了更强的高程放大效应,且在软岩斜坡中体现最显著;(4)岩性差异对斜坡水平向加速度高程效应的影响比结构差异的影响更为显著。研究结果为岩质斜坡的抗震设计提供了一定参考。
斜坡巖體的巖性及巖體結構是斜坡在地震作用下產生變形破壞的主要控製因素。基于振動檯模型試驗,對4箇斜坡模型探討瞭這2箇因素對斜坡地震動力響應的影響。巖性包括彊度相對較高的硬巖和彊度相對較低的軟巖,對這兩種巖性的斜坡又分彆攷慮瞭不含結構麵的均質斜坡和含水平層狀結構麵的斜坡。基于傳感器採集到的大量數據,以主頻相近的天然地震波和10 Hz正絃波加載為分析工況,穫得瞭以下幾點認識:(1)4箇模型斜坡坡麵和坡內的水平嚮加速度均具有高程放大效應,尤其是軟巖斜坡坡頂放大效應最顯著;(2)軟巖斜坡對水平嚮加速度的高程放大效應彊于硬巖斜坡,尤其是在均質斜坡中錶現最顯著,均質軟巖斜坡的高程放大效應呈現齣明顯的非線性特徵;(3)噹加載方嚮與水平層麵平行時,含水平層狀結構麵的斜坡比均質斜坡產生瞭更彊的高程放大效應,且在軟巖斜坡中體現最顯著;(4)巖性差異對斜坡水平嚮加速度高程效應的影響比結構差異的影響更為顯著。研究結果為巖質斜坡的抗震設計提供瞭一定參攷。
사파암체적암성급암체결구시사파재지진작용하산생변형파배적주요공제인소。기우진동태모형시험,대4개사파모형탐토료저2개인소대사파지진동력향응적영향。암성포괄강도상대교고적경암화강도상대교저적연암,대저량충암성적사파우분별고필료불함결구면적균질사파화함수평층상결구면적사파。기우전감기채집도적대량수거,이주빈상근적천연지진파화10 Hz정현파가재위분석공황,획득료이하궤점인식:(1)4개모형사파파면화파내적수평향가속도균구유고정방대효응,우기시연암사파파정방대효응최현저;(2)연암사파대수평향가속도적고정방대효응강우경암사파,우기시재균질사파중표현최현저,균질연암사파적고정방대효응정현출명현적비선성특정;(3)당가재방향여수평층면평행시,함수평층상결구면적사파비균질사파산생료경강적고정방대효응,차재연암사파중체현최현저;(4)암성차이대사파수평향가속도고정효응적영향비결구차이적영향경위현저。연구결과위암질사파적항진설계제공료일정삼고。
Lithology and rock structure of a rock slope are two of the most important controlling factors on its deformation and failure process during earthquake. Four shaking table models of slopes are designed to explore the effects of the above two factors on slope seismic responses. Referring to lithology, hard rock with high strength and soft rock with low strength are modeled, at the same time, an isotropic slope and a horizontally layered slope are selected for each kind of lithology. Based on a large number of sensor recordings, results are analyzed under excitations of both the real waves and sine waves which have the similar predominant frequency. The main conclusions are drawn as follows: (1) The horizontal accelerations on the slope surface and inside the slope demonstrate topographic amplification effect for all the 4 model slopes;and the maximum amplification factor occuring at the crest of the soft rock slope model;(2) The topographic effects in soft rock slopes are stronger than those in hard rock slopes, which is more obvious in the two isotropic rock slopes, and the topographic effect in the isotropic and soft rock slope depict nonlinear change laws. (3) When the shaking direction accords with the horizontal structure surface just as in the present study, the layered slopes demonstrate stronger topographic amplification effect for horizontal accelerations, especially in soft rock slopes;(4) Lithology plays a more important role in topographic effect than discontinuity in a rock slope during earthquake. The results provide a reference for the seismic design of rock slopes.