科技通报
科技通報
과기통보
BULLETIN OF SCIENCE AND TECHNOLOGY
2013年
9期
142-148
,共7页
SIFT特征%多示例距离%保局投影
SIFT特徵%多示例距離%保跼投影
SIFT특정%다시례거리%보국투영
SIFT feature%multi-instance distance%Locality Preserving Projection
提出一种人脸识别方法用于解决姿态变化对识别准确率的影响。首先检测人脸图像的SIFT特征,然后根据SIFT特征计算人脸图像间的多示例距离;基于此多示例距离,用保局投影将人脸图像映射至流形空间,最后在流形空间中采用K近邻方法进行人脸识别。该方法有三个特点:(1)采用SIFT特征减小了未知姿态对识别准确率的影响;(2)通过保局投影将特征变换到流形空间一个点,避免了复杂的SIFT特征匹配策略;(3)借助流形方法滤除高维特征中的噪声。实验结果表明与已有方法相比,在人脸姿态不确定的情况下,该方法能提供较为理想的识别准确率。
提齣一種人臉識彆方法用于解決姿態變化對識彆準確率的影響。首先檢測人臉圖像的SIFT特徵,然後根據SIFT特徵計算人臉圖像間的多示例距離;基于此多示例距離,用保跼投影將人臉圖像映射至流形空間,最後在流形空間中採用K近鄰方法進行人臉識彆。該方法有三箇特點:(1)採用SIFT特徵減小瞭未知姿態對識彆準確率的影響;(2)通過保跼投影將特徵變換到流形空間一箇點,避免瞭複雜的SIFT特徵匹配策略;(3)藉助流形方法濾除高維特徵中的譟聲。實驗結果錶明與已有方法相比,在人臉姿態不確定的情況下,該方法能提供較為理想的識彆準確率。
제출일충인검식별방법용우해결자태변화대식별준학솔적영향。수선검측인검도상적SIFT특정,연후근거SIFT특정계산인검도상간적다시례거리;기우차다시례거리,용보국투영장인검도상영사지류형공간,최후재류형공간중채용K근린방법진행인검식별。해방법유삼개특점:(1)채용SIFT특정감소료미지자태대식별준학솔적영향;(2)통과보국투영장특정변환도류형공간일개점,피면료복잡적SIFT특정필배책략;(3)차조류형방법려제고유특정중적조성。실험결과표명여이유방법상비,재인검자태불학정적정황하,해방법능제공교위이상적식별준학솔。
This paper present an approach to pose-invariant face recognition. Firstly, SIFT features are detected in each face image and the distance between two faces is determined in a multi-instance manner according to the SIFT features. Based on the distance, we project features into manifold space via Locality Preserving Projection. The recognition is finally done in manifold space through KNN algorithm. Our approach has three advantages: (1) the influence of unknown pose is diminished by using of SIFT features; (2) SIFT features are projected into manifold, which avoid complex strategy for SIFT feature matching; (3) Manifold is helpful for removing unknown noise from high- dimensional features. Experiments show that our approach provides exciting recognition rate under unknown pose compared with existed methods.