南方医科大学学报
南方醫科大學學報
남방의과대학학보
JOURNAL OF SOUTHERN MEDICAL UNIVERSITY
2013年
9期
1308-1311
,共4页
刘红梅%韩小华%杨莉%纪丽景%李素淑
劉紅梅%韓小華%楊莉%紀麗景%李素淑
류홍매%한소화%양리%기려경%리소숙
靶向超声造影剂%血管内皮生长因子受体2%平行板流动腔%子宫内膜容受性%黏附
靶嚮超聲造影劑%血管內皮生長因子受體2%平行闆流動腔%子宮內膜容受性%黏附
파향초성조영제%혈관내피생장인자수체2%평행판류동강%자궁내막용수성%점부
targeted ultrasonic contrast agent%KDR%parallel plate flow chamber%endometrial receptivity%attachment
目的探讨携血管内皮生长因子受体2(KDR)单抗的靶向脂质微泡的制备方法,并对其物理特性、生物活性、靶向黏附稳定性进行体外测定。方法采用声振仪制备生物素化脂质微泡(MB-B),再应用生物素-亲和素桥连技术构建携KDR单抗的靶向微泡(MB-BAB-KDR)。荧光显微镜下观察MB-B、单纯单抗微泡(MB-B-KDR)、MB-BAB-KDR与荧光二抗孵育后荧光强度。利用平行板流动腔技术体外模拟生理血流剪切力条件,评价靶向微泡的黏附效能。结果制备的靶向微泡MB-BAB-KDR呈圆球形,粒度分布均匀。与荧光二抗孵育后,MB-BAB-KDR发出明亮的绿色荧光(Ⅱ级),而MB-B-KDR显示微弱的绿色荧光(Ⅰ级)、MB-B无荧光(0级)。体外黏附实验显示,MB-BAB-KDR结合数目随着小鼠KDR Fc包被浓度的增高而增加(P<0.05),相同浓度下,随着时间的增加,MB-BAB-KDR结合数目增加。结论成功构建生物素-亲和素桥连的靶向脂质体微泡MB-BAB-KDR,体外黏附实验显示MB-BAB-KDR具有黏附稳定性,且与时间、浓度呈正相关。
目的探討攜血管內皮生長因子受體2(KDR)單抗的靶嚮脂質微泡的製備方法,併對其物理特性、生物活性、靶嚮黏附穩定性進行體外測定。方法採用聲振儀製備生物素化脂質微泡(MB-B),再應用生物素-親和素橋連技術構建攜KDR單抗的靶嚮微泡(MB-BAB-KDR)。熒光顯微鏡下觀察MB-B、單純單抗微泡(MB-B-KDR)、MB-BAB-KDR與熒光二抗孵育後熒光彊度。利用平行闆流動腔技術體外模擬生理血流剪切力條件,評價靶嚮微泡的黏附效能。結果製備的靶嚮微泡MB-BAB-KDR呈圓毬形,粒度分佈均勻。與熒光二抗孵育後,MB-BAB-KDR髮齣明亮的綠色熒光(Ⅱ級),而MB-B-KDR顯示微弱的綠色熒光(Ⅰ級)、MB-B無熒光(0級)。體外黏附實驗顯示,MB-BAB-KDR結閤數目隨著小鼠KDR Fc包被濃度的增高而增加(P<0.05),相同濃度下,隨著時間的增加,MB-BAB-KDR結閤數目增加。結論成功構建生物素-親和素橋連的靶嚮脂質體微泡MB-BAB-KDR,體外黏附實驗顯示MB-BAB-KDR具有黏附穩定性,且與時間、濃度呈正相關。
목적탐토휴혈관내피생장인자수체2(KDR)단항적파향지질미포적제비방법,병대기물리특성、생물활성、파향점부은정성진행체외측정。방법채용성진의제비생물소화지질미포(MB-B),재응용생물소-친화소교련기술구건휴KDR단항적파향미포(MB-BAB-KDR)。형광현미경하관찰MB-B、단순단항미포(MB-B-KDR)、MB-BAB-KDR여형광이항부육후형광강도。이용평행판류동강기술체외모의생리혈류전절력조건,평개파향미포적점부효능。결과제비적파향미포MB-BAB-KDR정원구형,립도분포균균。여형광이항부육후,MB-BAB-KDR발출명량적록색형광(Ⅱ급),이MB-B-KDR현시미약적록색형광(Ⅰ급)、MB-B무형광(0급)。체외점부실험현시,MB-BAB-KDR결합수목수착소서KDR Fc포피농도적증고이증가(P<0.05),상동농도하,수착시간적증가,MB-BAB-KDR결합수목증가。결론성공구건생물소-친화소교련적파향지질체미포MB-BAB-KDR,체외점부실험현시MB-BAB-KDR구유점부은정성,차여시간、농도정정상관。
Objective To prepare a new targeted liposome ultrasonic contrast agent with anti-KDR antibody that binds specifically with KDR as the main receptor of VEGF and evaluate its physical characteristics, biological activity and specific binding capability in vitro. Methods A sonicator was used to prepare the biotinylated lipid micro-bubbles (MB-B), and biotin-avidin-mediated technique was used for attachment of anti-mouse KDR monoclonal antibody to the micro-bubble shell to generate MB-BAB-KDR. MB-BAB-KDR was incubated with fluorescent second antibody to assess the link condition, and the control groups were the MB-B and micro-bubbles with the antibody alone (MB-B-KDR). A parallel plate flow chamber system was used to characterize micro-bubbles attachment efficiency to KDR Fc. Results The surface of the micro-bubbles could carry KDR antibody through the biotin-avidin bridge and MB-BAB-KDR were spherical and well-distributed. After incubation with the second antibody, MB-BAB-KDR could be observed to emit bright green fluorescence (Grade II) as compared with little or weak fluorescence in the control MB-B group (Grade 0) and MB-B-KDR group (Grade I). Targeted micro-bubbles bound to KDR Fc increased as the KDR Fc concentration increased (P<0.05). Conclusion The targeted liposome contrast agent linked with KDR antibody by biotin-avidin bridge we prepared shows an increased binding number as the KDR Fc concentration increases, which provides a novel approach to molecular imaging study of endometrial receptivity.