南方医科大学学报
南方醫科大學學報
남방의과대학학보
JOURNAL OF SOUTHERN MEDICAL UNIVERSITY
2013年
9期
1289-1294
,共6页
耿晓楠%李锵%崔博翔%王荞茵%刘浩澧
耿曉楠%李鏘%崔博翔%王蕎茵%劉浩澧
경효남%리장%최박상%왕교인%류호례
射频消融%弹性成像%温度成像
射頻消融%彈性成像%溫度成像
사빈소융%탄성성상%온도성상
radiofrequency ablation%elasticity imaging%temperature imaging
目的通过射频消融离体猪肝实验探讨超声温度成像和弹性成像方法在不同功率射频消融监控下的适用性。方法实验中选用7块猪肝(长×宽×高=5.0 cm×4.0 cm×2.5 cm)作为消融样本,分别在10及50 w功率下进行射频消融,观测其回波时移图像和超声弹性成像,以此来评估两种超声成像方法在不同功率的射频消融实验下的可靠性。结果基于回波时移的温度成像方法在低功率消融下,可准确显示消融区域(r=0.95),当温度升到50℃以上,消融区域与实际不再吻合;而弹性成像在高功率下可以准确反映射频消融的情况,在低功率消融下,由于温度上升范围有限,组织未完全坏死,弹性成像效果不明显。结论超声温度成像方法存在只限于低功率下的射频消融的局限性,结合弹性成像方法,可弥补超声温度成像方法的不足,实现不同功率射频消融下的消融区域的正确检测。
目的通過射頻消融離體豬肝實驗探討超聲溫度成像和彈性成像方法在不同功率射頻消融鑑控下的適用性。方法實驗中選用7塊豬肝(長×寬×高=5.0 cm×4.0 cm×2.5 cm)作為消融樣本,分彆在10及50 w功率下進行射頻消融,觀測其迴波時移圖像和超聲彈性成像,以此來評估兩種超聲成像方法在不同功率的射頻消融實驗下的可靠性。結果基于迴波時移的溫度成像方法在低功率消融下,可準確顯示消融區域(r=0.95),噹溫度升到50℃以上,消融區域與實際不再吻閤;而彈性成像在高功率下可以準確反映射頻消融的情況,在低功率消融下,由于溫度上升範圍有限,組織未完全壞死,彈性成像效果不明顯。結論超聲溫度成像方法存在隻限于低功率下的射頻消融的跼限性,結閤彈性成像方法,可瀰補超聲溫度成像方法的不足,實現不同功率射頻消融下的消融區域的正確檢測。
목적통과사빈소융리체저간실험탐토초성온도성상화탄성성상방법재불동공솔사빈소융감공하적괄용성。방법실험중선용7괴저간(장×관×고=5.0 cm×4.0 cm×2.5 cm)작위소융양본,분별재10급50 w공솔하진행사빈소융,관측기회파시이도상화초성탄성성상,이차래평고량충초성성상방법재불동공솔적사빈소융실험하적가고성。결과기우회파시이적온도성상방법재저공솔소융하,가준학현시소융구역(r=0.95),당온도승도50℃이상,소융구역여실제불재문합;이탄성성상재고공솔하가이준학반영사빈소융적정황,재저공솔소융하,유우온도상승범위유한,조직미완전배사,탄성성상효과불명현。결론초성온도성상방법존재지한우저공솔하적사빈소융적국한성,결합탄성성상방법,가미보초성온도성상방법적불족,실현불동공솔사빈소융하적소융구역적정학검측。
Objective To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Methods Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperture and elasticity image analysis. Infarred themometry was concurrently applied to provide temperatuer change calibation during the RFA process. Results Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infarred tempetuare distriubtion under high RF exposures. The elstaicity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Conclusion Diagnostic ultrasound-based temperaure and elastogrphy is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, wehreas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances torward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.