制冷与空调(四川)
製冷與空調(四川)
제랭여공조(사천)
REFRIGERATION & AIR-CONDITION
2013年
5期
443-446
,共4页
冷水机组%能效%预测方法%BP神经网络
冷水機組%能效%預測方法%BP神經網絡
랭수궤조%능효%예측방법%BP신경망락
chiller%COP%prediction method%BP neural network
针对冷水机组能效物理模型及辨识模型结构复杂,模型参数难以获取等特点,提出了基于BP神经网络的冷水机组能效预测方法,并以某酒店离心式冷水机组为例,建立了其冷水机组能效预测模型,并利用实际运行数据对模型进行了训练及验证,同时介绍了该模型神经网络结构参数的设计及冷水机组能效预测方法实现过程,线性回归分析结果表明:提出的能效预测方法能够准确地预测冷水机组的能效,方法简单、实用,具有一定的适用性。
針對冷水機組能效物理模型及辨識模型結構複雜,模型參數難以穫取等特點,提齣瞭基于BP神經網絡的冷水機組能效預測方法,併以某酒店離心式冷水機組為例,建立瞭其冷水機組能效預測模型,併利用實際運行數據對模型進行瞭訓練及驗證,同時介紹瞭該模型神經網絡結構參數的設計及冷水機組能效預測方法實現過程,線性迴歸分析結果錶明:提齣的能效預測方法能夠準確地預測冷水機組的能效,方法簡單、實用,具有一定的適用性。
침대랭수궤조능효물리모형급변식모형결구복잡,모형삼수난이획취등특점,제출료기우BP신경망락적랭수궤조능효예측방법,병이모주점리심식랭수궤조위례,건립료기랭수궤조능효예측모형,병이용실제운행수거대모형진행료훈련급험증,동시개소료해모형신경망락결구삼수적설계급랭수궤조능효예측방법실현과정,선성회귀분석결과표명:제출적능효예측방법능구준학지예측랭수궤조적능효,방법간단、실용,구유일정적괄용성。
The physical and identification model of COP for chillers are always described by complex formulation, and require a great number of parameters to measure or identify, so it is not easy to fulfill this study. A prediction method of COP for a real chiller plant has been proposed in this paper, and also be trained and tested using the operation data of the chiller plant. In the meantime, the design process of the structure parameter and realize process of the method have been introduced in this paper, the consequence of the analysis of train and test using linear regression technique shows that the method proposed in this paper can predict the COP of the chiller accurately and quickly, and the method is simple but it is useful to the COP prediction of chillers.