红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
8期
2613-2618
,共6页
王思远%娄淑琴%梁生%陈京惠
王思遠%婁淑琴%樑生%陳京惠
왕사원%루숙금%량생%진경혜
光纤分布式扰动传感系统%Mach-Zehnder 干涉仪%频率-时间特性%模式识别
光纖分佈式擾動傳感繫統%Mach-Zehnder 榦涉儀%頻率-時間特性%模式識彆
광섬분포식우동전감계통%Mach-Zehnder 간섭의%빈솔-시간특성%모식식별
fiber distributed disturbance sensing system%M-Z interferometer%frequency-time characteristics%pattern recognition
针对 M-Z 干涉仪型光纤分布式扰动传感系统输出信号短时频率随外界扰动变化的特征,提出了基于短时频率-时间特性的模式识别算法。采用提取短时过电平率来描述传感信号的短时平均频率-时间特性,并将提取出来的时频特性分段后建立相应的特征元素模型,通过动态规划算法(DTW)筛选出最优特征元素模型,将信号所有最优模型的参数作为信号特征输入到人工神经网络(ANN)进行学习和判决,降低了 ANN 的训练难度以及对时间的敏感性,提高了系统的环境适应能力。实验结果表明:该方法可以有效区分瞬时作用、长时作用、径向作用和不规则作用等多种不同扰动事件,平均识别速度在0.26 s 之内,平均识别准确度在97%以上。
針對 M-Z 榦涉儀型光纖分佈式擾動傳感繫統輸齣信號短時頻率隨外界擾動變化的特徵,提齣瞭基于短時頻率-時間特性的模式識彆算法。採用提取短時過電平率來描述傳感信號的短時平均頻率-時間特性,併將提取齣來的時頻特性分段後建立相應的特徵元素模型,通過動態規劃算法(DTW)篩選齣最優特徵元素模型,將信號所有最優模型的參數作為信號特徵輸入到人工神經網絡(ANN)進行學習和判決,降低瞭 ANN 的訓練難度以及對時間的敏感性,提高瞭繫統的環境適應能力。實驗結果錶明:該方法可以有效區分瞬時作用、長時作用、徑嚮作用和不規則作用等多種不同擾動事件,平均識彆速度在0.26 s 之內,平均識彆準確度在97%以上。
침대 M-Z 간섭의형광섬분포식우동전감계통수출신호단시빈솔수외계우동변화적특정,제출료기우단시빈솔-시간특성적모식식별산법。채용제취단시과전평솔래묘술전감신호적단시평균빈솔-시간특성,병장제취출래적시빈특성분단후건립상응적특정원소모형,통과동태규화산법(DTW)사선출최우특정원소모형,장신호소유최우모형적삼수작위신호특정수입도인공신경망락(ANN)진행학습화판결,강저료 ANN 적훈련난도이급대시간적민감성,제고료계통적배경괄응능력。실험결과표명:해방법가이유효구분순시작용、장시작용、경향작용화불규칙작용등다충불동우동사건,평균식별속도재0.26 s 지내,평균식별준학도재97%이상。
A frequency -time based pattern recognition method was presented for recognizing different disturbance modes in fiber distributed disturbance sensing system based on M-Z interferometer by using the frequency of output interferometer signal in relation to the external disturbance signal. The frequency-time characteristic was measured by using the rate which the output signals crossed the preset average level. Then frequency -time characteristic was segmented and the corresponding feature element model could be set up. The optimum models were selected by using dynamic time warping (DTW) algorithm, and then they were sent to the artificial neural network (ANN) to carry out training and judging. This method could effectively reduce the difficulty of training and judging the signal and time sensitivity of the ANN, and improve the adaptability for the environment. Experimental results illustrate that this method can effectively distinguish different disturbance events such as short-term, long-term, radial and irregular event. The average recognition speed is less than 0.26 s and average accuracy is great than 97%.