电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2013年
10期
2825-2829
,共5页
徐茹枝%王婧%朱少敏%许瑞辉
徐茹枝%王婧%硃少敏%許瑞輝
서여지%왕청%주소민%허서휘
电力信息网络%网络威胁态势%预测%AdaBoosting方法%支持向量回归%回归问题%滑动时间窗口
電力信息網絡%網絡威脅態勢%預測%AdaBoosting方法%支持嚮量迴歸%迴歸問題%滑動時間窗口
전력신식망락%망락위협태세%예측%AdaBoosting방법%지지향량회귀%회귀문제%활동시간창구
power information network%cyber-threats situation%prediction%AdaBoosting algorithm%support vector regression%regression problem%sliding time window
威胁态势预测可以有效反映电力信息网络在未来时刻的宏观安全状况。为实现威胁态势的精确预测,提出一种基于AdaBoosting方法的网络威胁态势预测方法。该方法采用威胁态势值描述电力信息网络的宏观安全态势,并将威胁态势值的预测抽象为回归问题,进而利用AdaBoosting方法求解。该方法先利用滑动时间窗口将威胁态势值构造成时间序列样本集,再将样本集输入到AdaBoosting方法中训练,以得到回归分析模型,并利用该模型完成威胁态势预测。最后基于现场数据的验证性实验证明了所提方法的有效性。
威脅態勢預測可以有效反映電力信息網絡在未來時刻的宏觀安全狀況。為實現威脅態勢的精確預測,提齣一種基于AdaBoosting方法的網絡威脅態勢預測方法。該方法採用威脅態勢值描述電力信息網絡的宏觀安全態勢,併將威脅態勢值的預測抽象為迴歸問題,進而利用AdaBoosting方法求解。該方法先利用滑動時間窗口將威脅態勢值構造成時間序列樣本集,再將樣本集輸入到AdaBoosting方法中訓練,以得到迴歸分析模型,併利用該模型完成威脅態勢預測。最後基于現場數據的驗證性實驗證明瞭所提方法的有效性。
위협태세예측가이유효반영전력신식망락재미래시각적굉관안전상황。위실현위협태세적정학예측,제출일충기우AdaBoosting방법적망락위협태세예측방법。해방법채용위협태세치묘술전력신식망락적굉관안전태세,병장위협태세치적예측추상위회귀문제,진이이용AdaBoosting방법구해。해방법선이용활동시간창구장위협태세치구조성시간서렬양본집,재장양본집수입도AdaBoosting방법중훈련,이득도회귀분석모형,병이용해모형완성위협태세예측。최후기우현장수거적험증성실험증명료소제방법적유효성。
The prediction of cyber-threats situation can effectively reflect the macroscopic security situation of power information network in the future time. To realize the accurate prediction of cyber-threats situation, an AdaBoosting algorithm based cyber-threats situation prediction method for information network is proposed. In the proposed method, the values of cyber-threats situation are used to describe the macroscopic security situation of power information network, and the prediction of macroscopic security situation is abstracted to a regression problem, and then the regression problem is solved by AdaBoosting algorithm. Firstly, using the sliding time window a time series sample set is constructed by cyber-threats situation values;then the sample set is input into AdaBoosting algorithm to be trained to obtain a regression analysis model;finally the prediction of cyber-threats situation is completed by the regression analysis model. Finally, the effectiveness of the proposed method is verified by results of replication experiments based on field data.