上海大学学报(自然科学版)
上海大學學報(自然科學版)
상해대학학보(자연과학판)
JOURNAL OF SHANGHAI UNIVERSITY (NATURAL SCIENCE EDITION)
2014年
1期
15-32
,共18页
成来飞%张立同%梅辉%刘永胜%曾庆丰
成來飛%張立同%梅輝%劉永勝%曾慶豐
성래비%장립동%매휘%류영성%증경봉
化学气相渗透%陶瓷基复合材料%模拟与可视化%柔性与鲁棒性%控制与设计
化學氣相滲透%陶瓷基複閤材料%模擬與可視化%柔性與魯棒性%控製與設計
화학기상삼투%도자기복합재료%모의여가시화%유성여로봉성%공제여설계
chemical vapor infiltration (CVI)%ceramic matrix composites%simulation and visualization%flexibility and robustness%control and design
综述了采用化学气相渗透(chemical vapor infiltration, CVI)工艺制备陶瓷基复合材料(ceramic matrix composites, CMCs)的模拟与可视化、柔性与鲁棒性以及强韧性控制与设计等研究的进展和趋势。陶瓷基复合材料气相制造过程模拟涉及气体传输、反应热力学与动力学、预制体的孔隙结构建模等理论,是一个典型的多尺度和多物理场问题。运用量子化学、化学热力学、微观动力学、有限元、水平集和人工智能等方法,实现了复合材料致密化过程的模拟和成分分析,更加精准地反映了气体在多孔预制体中的各向异性传输和沉积过程,为工艺优化提供更准确的控制参数。 CVI工艺制备陶瓷基复合材料具有柔性与鲁棒性等工艺特性,包括应用广泛性,可控制、可调整与可设计性,可连接与可组装性,可纠错、可修复与可兼容性等诸多特性,适用于陶瓷基复合材料微结构的调控,是陶瓷基复合材料领域最先进的基础制造方法。陶瓷基复合材料的强韧性一直是其发展中的核心问题,增强体纤维、基体及二者界面之间的模量匹配,以及热残余应力和纤维基体体积分数等参数的设计与控制是这个核心问题的关键。通过合理控制与设计这些参数,可以实现陶瓷基复合材料的强韧化控制与设计,从而适应不同使用环境条件的需求。
綜述瞭採用化學氣相滲透(chemical vapor infiltration, CVI)工藝製備陶瓷基複閤材料(ceramic matrix composites, CMCs)的模擬與可視化、柔性與魯棒性以及彊韌性控製與設計等研究的進展和趨勢。陶瓷基複閤材料氣相製造過程模擬涉及氣體傳輸、反應熱力學與動力學、預製體的孔隙結構建模等理論,是一箇典型的多呎度和多物理場問題。運用量子化學、化學熱力學、微觀動力學、有限元、水平集和人工智能等方法,實現瞭複閤材料緻密化過程的模擬和成分分析,更加精準地反映瞭氣體在多孔預製體中的各嚮異性傳輸和沉積過程,為工藝優化提供更準確的控製參數。 CVI工藝製備陶瓷基複閤材料具有柔性與魯棒性等工藝特性,包括應用廣汎性,可控製、可調整與可設計性,可連接與可組裝性,可糾錯、可脩複與可兼容性等諸多特性,適用于陶瓷基複閤材料微結構的調控,是陶瓷基複閤材料領域最先進的基礎製造方法。陶瓷基複閤材料的彊韌性一直是其髮展中的覈心問題,增彊體纖維、基體及二者界麵之間的模量匹配,以及熱殘餘應力和纖維基體體積分數等參數的設計與控製是這箇覈心問題的關鍵。通過閤理控製與設計這些參數,可以實現陶瓷基複閤材料的彊韌化控製與設計,從而適應不同使用環境條件的需求。
종술료채용화학기상삼투(chemical vapor infiltration, CVI)공예제비도자기복합재료(ceramic matrix composites, CMCs)적모의여가시화、유성여로봉성이급강인성공제여설계등연구적진전화추세。도자기복합재료기상제조과정모의섭급기체전수、반응열역학여동역학、예제체적공극결구건모등이론,시일개전형적다척도화다물리장문제。운용양자화학、화학열역학、미관동역학、유한원、수평집화인공지능등방법,실현료복합재료치밀화과정적모의화성분분석,경가정준지반영료기체재다공예제체중적각향이성전수화침적과정,위공예우화제공경준학적공제삼수。 CVI공예제비도자기복합재료구유유성여로봉성등공예특성,포괄응용엄범성,가공제、가조정여가설계성,가련접여가조장성,가규착、가수복여가겸용성등제다특성,괄용우도자기복합재료미결구적조공,시도자기복합재료영역최선진적기출제조방법。도자기복합재료적강인성일직시기발전중적핵심문제,증강체섬유、기체급이자계면지간적모량필배,이급열잔여응력화섬유기체체적분수등삼수적설계여공제시저개핵심문제적관건。통과합리공제여설계저사삼수,가이실현도자기복합재료적강인화공제여설계,종이괄응불동사용배경조건적수구。
This paper reviews the development trends, and flexible, robust and toughness control and design in the simulation and visualization of ceramic matrix composites (CMCs) manufacturing by chemical vapor infiltration (CVI) process. The gaseous route involves gas transfer, reaction thermodynamics and kinetics, and pore structure modeling, which is a typical multi-scale and multi-physics problem. Quantum chemistry, chemical thermody-namics, microscopic kinetics, finite element, the level-set and artificial intelligence methods are applied to achieve densification process simulation and composition analysis of com-posite materials, accurately reflect anisotropy of gas transfer in the porous preform and the deposition process, and provide more accurate control parameters for process optimization. CVI is a flexible and robust process for manufacturing CMCs. It has extensive applica-tions and abilities in process control, adjustment, design, assemble, error-correction and compatibility. It is suitable for microstructure control of CMCs, and is the most advanced fundamental method for manufacturing CMCs. Strength and toughness are the core issues for CMCs, including coordination of the moduli among reinforcement fibers, matrix and inter-phases, residual thermal stresses control, and the volume fraction design for both the matrix and the fibers. Tough CMCs can be manufactured with reasonable control and design of these parameters so as to meet the requirements under different environmental conditions.