计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
19期
141-146
,共6页
阎继宁%周可法%王金林%王珊珊%汪玮%李东
閻繼寧%週可法%王金林%王珊珊%汪瑋%李東
염계저%주가법%왕금림%왕산산%왕위%리동
光谱角匹配技术%支持向量机%高光谱%蚀变信息提取%相似矿物
光譜角匹配技術%支持嚮量機%高光譜%蝕變信息提取%相似礦物
광보각필배기술%지지향량궤%고광보%식변신식제취%상사광물
Spectral Angle Mapper(SAM)%Support Vector Machine(SVM)%hyper-spectral%alteration information extraction%similar mineral
高光谱遥感技术的发展,提高了遥感技术的定量化水平,要求人们从光谱维去理解地物在空间维的变换。提出了一种光谱角匹配技术(Spectral Angle Mapper,SAM)与支持向量机(Support Vector Machine,SVM)相结合的高光谱遥感蚀变信息提取模型,在光谱维提取地表的蚀变信息。鉴于SAM算法仅考虑波谱矢量方向,忽略辐射亮度大小的缺点,利用SVM算法对SAM的提取结果进行二次分类,利用网格搜索法并结合分类精度评估进行参数寻优。通过AVIRIS高光谱数据实验证明,提取的蚀变信息分类精度为78.1726%,Kappa系数为0.7125。该模型计算方便,对于解决光谱维的地物分类及相似矿物的蚀变信息提取具有一定的实际意义。
高光譜遙感技術的髮展,提高瞭遙感技術的定量化水平,要求人們從光譜維去理解地物在空間維的變換。提齣瞭一種光譜角匹配技術(Spectral Angle Mapper,SAM)與支持嚮量機(Support Vector Machine,SVM)相結閤的高光譜遙感蝕變信息提取模型,在光譜維提取地錶的蝕變信息。鑒于SAM算法僅攷慮波譜矢量方嚮,忽略輻射亮度大小的缺點,利用SVM算法對SAM的提取結果進行二次分類,利用網格搜索法併結閤分類精度評估進行參數尋優。通過AVIRIS高光譜數據實驗證明,提取的蝕變信息分類精度為78.1726%,Kappa繫數為0.7125。該模型計算方便,對于解決光譜維的地物分類及相似礦物的蝕變信息提取具有一定的實際意義。
고광보요감기술적발전,제고료요감기술적정양화수평,요구인문종광보유거리해지물재공간유적변환。제출료일충광보각필배기술(Spectral Angle Mapper,SAM)여지지향량궤(Support Vector Machine,SVM)상결합적고광보요감식변신식제취모형,재광보유제취지표적식변신식。감우SAM산법부고필파보시량방향,홀략복사량도대소적결점,이용SVM산법대SAM적제취결과진행이차분류,이용망격수색법병결합분류정도평고진행삼수심우。통과AVIRIS고광보수거실험증명,제취적식변신식분류정도위78.1726%,Kappa계수위0.7125。해모형계산방편,대우해결광보유적지물분류급상사광물적식변신식제취구유일정적실제의의。
With the development of hyper-spectral remote sensing technology, the level of quantitative remote sensing technology has improved. Aiming at the hyper-spectral image cube, the understanding and data processing in image spatial dimension must be changed to that completed in the spectral dimension. Therefore, an image classification model combined with SAM(Spectral Angle Mapper)and SVM(Support Vector Machine)is introduced, and extracts alteration information in the spectral dimension. In view of the SAM algorithm considering only the spectrum direction, ignoring radiance size, the second classification is made for the SAM results using SVM algorithm and the best parameter is sought using grid search method combined with the classification accuracy assessment. The results of AVIRIS hyper-spectral data show that the classification precision of alteration information reaches 78.172 6%, and a Kappa coefficient of 0.712 5. This model is convenient calculation, and has some practical meaning in solving spectral dimension terrain classification and similar mineral alteration information extraction.