计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
19期
68-72
,共5页
张陶%于炯%杨兴耀%廖彬
張陶%于炯%楊興耀%廖彬
장도%우형%양흥요%료빈
任务调度%云计算%粒子群算法%双适应度
任務調度%雲計算%粒子群算法%雙適應度
임무조도%운계산%입자군산법%쌍괄응도
task scheduling%cloud computing%Particle Swarm Optimization(PSO)algorithm%double-fitness
如何对任务进行高效合理的调度是云计算需要解决的关键问题之一,针对云计算的编程模型框架,在传统粒子群优化算法(PSO)的基础上,提出了一种具有双适应度的粒子群算法(DFPSO)。通过该算法不但能找到任务总完成时间较短的调度结果,而且此调度结果的任务平均完成时间也较短。仿真分析结果表明,在相同的条件设置下,该算法优于传统的粒子群优化算法,当任务数量增多时,其综合调度性能优点明显。
如何對任務進行高效閤理的調度是雲計算需要解決的關鍵問題之一,針對雲計算的編程模型框架,在傳統粒子群優化算法(PSO)的基礎上,提齣瞭一種具有雙適應度的粒子群算法(DFPSO)。通過該算法不但能找到任務總完成時間較短的調度結果,而且此調度結果的任務平均完成時間也較短。倣真分析結果錶明,在相同的條件設置下,該算法優于傳統的粒子群優化算法,噹任務數量增多時,其綜閤調度性能優點明顯。
여하대임무진행고효합리적조도시운계산수요해결적관건문제지일,침대운계산적편정모형광가,재전통입자군우화산법(PSO)적기출상,제출료일충구유쌍괄응도적입자군산법(DFPSO)。통과해산법불단능조도임무총완성시간교단적조도결과,이차차조도결과적임무평균완성시간야교단。방진분석결과표명,재상동적조건설치하,해산법우우전통적입자군우화산법,당임무수량증다시,기종합조도성능우점명현。
How to schedule tasks efficiently is one of the key issues to be resolved in cloud computing environment. A Double Fitness Particle Swarm Optimization algorithm(DFPSO)based on conventional Particle Swarm Optimization(PSO)is brought up for the programming framework of cloud computing. Through this algorithm, the better task scheduling not only shortens total task completion time and also has shorter average task completion time. Simulation results show that DFPSO is better than PSO, and the integrated scheduling performance is excellent, especially when the number of tasks increases.