计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
19期
25-30
,共6页
合作博弈%模糊数学%Shapley值%结构元
閤作博弈%模糊數學%Shapley值%結構元
합작박혁%모호수학%Shapley치%결구원
cooperative games%fuzzy mathematics%Shapley value%structured element
考虑到现实应用中,局中人可能以不同的参与度参加到不同的联盟中,并且他们在合作之前不确定不同合作策略选择下的收益,则在传统合作博弈中应用模糊数学理论。基于Choquet积分,将支付函数和参与度拓展为模糊数,给出要素双重模糊下的模糊合作博弈的定义和模糊合作博弈Shapley值的定义。应用模糊结构元理论,构造了要素双重模糊下的模糊合作博弈的Shapley值,使模糊Shapley值的隶属函数得到解析表达。通过一个算例,来说明该模型的具体应用。可以看出,该研究方法和结论易掌握、推广,使模糊合作博弈理论可以更广泛地应用到现实生活中。
攷慮到現實應用中,跼中人可能以不同的參與度參加到不同的聯盟中,併且他們在閤作之前不確定不同閤作策略選擇下的收益,則在傳統閤作博弈中應用模糊數學理論。基于Choquet積分,將支付函數和參與度拓展為模糊數,給齣要素雙重模糊下的模糊閤作博弈的定義和模糊閤作博弈Shapley值的定義。應用模糊結構元理論,構造瞭要素雙重模糊下的模糊閤作博弈的Shapley值,使模糊Shapley值的隸屬函數得到解析錶達。通過一箇算例,來說明該模型的具體應用。可以看齣,該研究方法和結論易掌握、推廣,使模糊閤作博弈理論可以更廣汎地應用到現實生活中。
고필도현실응용중,국중인가능이불동적삼여도삼가도불동적련맹중,병차타문재합작지전불학정불동합작책략선택하적수익,칙재전통합작박혁중응용모호수학이론。기우Choquet적분,장지부함수화삼여도탁전위모호수,급출요소쌍중모호하적모호합작박혁적정의화모호합작박혁Shapley치적정의。응용모호결구원이론,구조료요소쌍중모호하적모호합작박혁적Shapley치,사모호Shapley치적대속함수득도해석표체。통과일개산례,래설명해모형적구체응용。가이간출,해연구방법화결론역장악、추엄,사모호합작박혁이론가이경엄범지응용도현실생활중。
Considering that in the practical applications, the player can attend different league with the different participation, and they don’t sure benefits before cooperation under different cooperation strategy choice, the paper uses fuzzy mathematics theory in the traditional cooperative game. This paper expands benefits and participation as fuzzy numbers based on the Choquet integral and gives the definition of fuzzy cooperative games and fuzzy Shapley value with dual fuzzy factors. The fuzzy structured element theory is applied to analyze fuzzy cooperative games with dual fuzzy factors. The membership function of the fuzzy Shapley value can get analytic expression. An example is used to illustrate the specific application of the model. It can be seen that this method and conclusion is easy to master and promote. Fuzzy cooperative game theory can be applied more widely to real life.