数理医药学杂志
數理醫藥學雜誌
수리의약학잡지
JOURNAL OF MATHEMATICAL MEDICINE
2013年
5期
539-543
,共5页
数据挖掘%领域粗糙集%树增强贝叶斯网络%肝炎肝硬化%BP神经网络
數據挖掘%領域粗糙集%樹增彊貝葉斯網絡%肝炎肝硬化%BP神經網絡
수거알굴%영역조조집%수증강패협사망락%간염간경화%BP신경망락
data ming%neighborhood rough sets%tree augment naive Bayesian network%post-hepatitic cirrhosis%BP neural network
目的:提出基于领域粗糙集的贝叶斯网络医学数据挖掘模型,探讨肝炎肝硬化的临床分类。方法:根据所收集的355例肝硬化患者临床资料,采用领域粗糙集算法提取与肝炎肝硬化临床分类有关的生物检测指标。然后,运用树增强型贝叶斯分类器构建分类模型进行肝炎肝硬化的临床分类。结果:采用领域粗糙集贝叶斯网络分类模型进行肝炎肝硬化代偿性分类的正确率为90.91%,活动性分类正确率为94.09%,而使用BP神经网络的代偿性分类正确率为76.82%,活动性分类为85.45%。结论:领域粗糙集贝叶斯网络分类方法可以有效地进行肝炎肝硬化临床分类,并能够为临床医学诊断研究提供参考。
目的:提齣基于領域粗糙集的貝葉斯網絡醫學數據挖掘模型,探討肝炎肝硬化的臨床分類。方法:根據所收集的355例肝硬化患者臨床資料,採用領域粗糙集算法提取與肝炎肝硬化臨床分類有關的生物檢測指標。然後,運用樹增彊型貝葉斯分類器構建分類模型進行肝炎肝硬化的臨床分類。結果:採用領域粗糙集貝葉斯網絡分類模型進行肝炎肝硬化代償性分類的正確率為90.91%,活動性分類正確率為94.09%,而使用BP神經網絡的代償性分類正確率為76.82%,活動性分類為85.45%。結論:領域粗糙集貝葉斯網絡分類方法可以有效地進行肝炎肝硬化臨床分類,併能夠為臨床醫學診斷研究提供參攷。
목적:제출기우영역조조집적패협사망락의학수거알굴모형,탐토간염간경화적림상분류。방법:근거소수집적355례간경화환자림상자료,채용영역조조집산법제취여간염간경화림상분류유관적생물검측지표。연후,운용수증강형패협사분류기구건분류모형진행간염간경화적림상분류。결과:채용영역조조집패협사망락분류모형진행간염간경화대상성분류적정학솔위90.91%,활동성분류정학솔위94.09%,이사용BP신경망락적대상성분류정학솔위76.82%,활동성분류위85.45%。결론:영역조조집패협사망락분류방법가이유효지진행간염간경화림상분류,병능구위림상의학진단연구제공삼고。
Objective:A kind of Data mining model by Bayesian Network Based on Neighborhood Rough Sets was put forward to research the means of clinical classification of post-hepatitic cirrhosis .Methods:Ac-cording to the clinical data of 355 patients with post-hepatitic cirrhosis ,Neighborhood Rough Sets was made use of feature selection ,then tree augment naive Bayesian Network was applied to classifying the post-hepa-titic cirrhosis .Results :With using of Bayesian Network Based on Neighborhood Rough Sets ,the accuracy of distinguishing compensated post-hepatitic cirrhosis was 90 .91% and distinguishing active post-hepatitic cir-rhosis is 94 .09% ,it was 76 .82% and 85 .45% by that of BP Neural Network .Conclusion:Bayesian Network Based on Neighborhood Rough Sets was qualified for the classification of post-hepatitic cirrhosis ,and it may provide a useful method for the clinical research and the assessment of therapeutic effectiveness .