岩石力学与工程学报
巖石力學與工程學報
암석역학여공정학보
CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING
2013年
9期
1762-1771
,共10页
徐华%李天斌%王栋%李育枢%林之恒
徐華%李天斌%王棟%李育樞%林之恆
서화%리천빈%왕동%리육추%림지항
隧道工程%山岭隧道%地震动力响应%振动台模型试验%加速度放大效应
隧道工程%山嶺隧道%地震動力響應%振動檯模型試驗%加速度放大效應
수도공정%산령수도%지진동력향응%진동태모형시험%가속도방대효응
tunnel engineering%mountain tunnel%seismic responses%shaking table model test%acceleration amplification effect
以国道318线黄草坪2#隧道为原型,开展大型三维振动台模型试验,重点研究隧道结构的地震动力响应规律及隧道与围岩的相互动力作用。通过对模型试验的关键技术研究,建立一套山岭隧道大型振动台模型试验设计、制作、加载及测试的工艺与方法流程。模型震害分析表明:隧道洞口边坡以开裂和滚落石震害为主,坡面加速度沿高程方向递增且具有一定的放大效应,在坡面原生裂缝和薄弱部位极易出现震害;隧道结构以衬砌开裂和掉块震害为主,初期支护和二次衬砌出现裂缝的部位不同,但钢筋网能够有效地阻止裂缝的发展。模型试验结果表明:隧道结构的加速度响应要大于周边围岩且对周边岩土体的加速度响应有一定的放大效应;对于一般的硬岩质山岭隧道来说,隧道洞口段0~50 m范围的加速度响应较大,为隧道抗减震设防的重点区域;山岭偏压隧道横向不同部位的地震动力响应存在明显差异;当地震波从隧道底部小角度入射时,隧道结构的加速度响应最强烈,对隧道结构的安全性是非常不利的;随着加载地面峰值加速度(PGA)的增大,隧道不同部位的加速度响应增大,但当隧道结构进入非线性破坏状态后,PGA呈减小趋势,地震能量逐渐被耗散。
以國道318線黃草坪2#隧道為原型,開展大型三維振動檯模型試驗,重點研究隧道結構的地震動力響應規律及隧道與圍巖的相互動力作用。通過對模型試驗的關鍵技術研究,建立一套山嶺隧道大型振動檯模型試驗設計、製作、加載及測試的工藝與方法流程。模型震害分析錶明:隧道洞口邊坡以開裂和滾落石震害為主,坡麵加速度沿高程方嚮遞增且具有一定的放大效應,在坡麵原生裂縫和薄弱部位極易齣現震害;隧道結構以襯砌開裂和掉塊震害為主,初期支護和二次襯砌齣現裂縫的部位不同,但鋼觔網能夠有效地阻止裂縫的髮展。模型試驗結果錶明:隧道結構的加速度響應要大于週邊圍巖且對週邊巖土體的加速度響應有一定的放大效應;對于一般的硬巖質山嶺隧道來說,隧道洞口段0~50 m範圍的加速度響應較大,為隧道抗減震設防的重點區域;山嶺偏壓隧道橫嚮不同部位的地震動力響應存在明顯差異;噹地震波從隧道底部小角度入射時,隧道結構的加速度響應最彊烈,對隧道結構的安全性是非常不利的;隨著加載地麵峰值加速度(PGA)的增大,隧道不同部位的加速度響應增大,但噹隧道結構進入非線性破壞狀態後,PGA呈減小趨勢,地震能量逐漸被耗散。
이국도318선황초평2#수도위원형,개전대형삼유진동태모형시험,중점연구수도결구적지진동력향응규률급수도여위암적상호동력작용。통과대모형시험적관건기술연구,건립일투산령수도대형진동태모형시험설계、제작、가재급측시적공예여방법류정。모형진해분석표명:수도동구변파이개렬화곤낙석진해위주,파면가속도연고정방향체증차구유일정적방대효응,재파면원생렬봉화박약부위겁역출현진해;수도결구이츤체개렬화도괴진해위주,초기지호화이차츤체출현렬봉적부위불동,단강근망능구유효지조지렬봉적발전。모형시험결과표명:수도결구적가속도향응요대우주변위암차대주변암토체적가속도향응유일정적방대효응;대우일반적경암질산령수도래설,수도동구단0~50 m범위적가속도향응교대,위수도항감진설방적중점구역;산령편압수도횡향불동부위적지진동력향응존재명현차이;당지진파종수도저부소각도입사시,수도결구적가속도향응최강렬,대수도결구적안전성시비상불리적;수착가재지면봉치가속도(PGA)적증대,수도불동부위적가속도향응증대,단당수도결구진입비선성파배상태후,PGA정감소추세,지진능량축점피모산。
Taking Huangcaoping Tunnel No.2 of National Highway No.318 as a background,a large-scale 3D shaking table model test was carried out to understand the tunnel structure seismic responses and the tunnel-surrounding rock interaction. The procedures of design,manufacture,loading and test of the large-scale mountain tunnel model test were described associated with key technical issues in the model test. Seismic damage analysis of the model test shows that the main seismic damages of the tunnel entrance slope are of crack and rock falling,the slope acceleration along the elevation direction gradually increases and has a certain amplification effect;and the native cracks and weak parts on the slope are easy to be damaged;the main seismic damages of the tunnel structure are of crack and lining drop;the performance of seismic damage with initial support and secondary lining is different;and steel mesh can effectively prevent the propagation of cracks. The model test results also show that the acceleration response of the tunnel structure is greater than the surrounding rocks,and the tunnel structure leads to the amplification of the seismic response of the surrounding rocks. Basically,the acceleration response of the 0-50 m section from the entrance for mountain tunnel in hard rock is greater than that in other sections of the tunnel;and a main seismic resistance mitigation should be adopted in this section;the seismic responses of left and right side walls of unsymmetrically loaded tunnel is significantly different. Vertical and nearly vertical incident earthquake waves from the bottom of the tunnels cause strong responses of the tunnels,which is unfavorable for the tunnel safety. With increasing loading peak ground acceleration(PGA),the acceleration of the different parts of the tunnel structure increases gradually,but when the tunnel structure comes into the nonlinear failure,the PGA of tunnel structure shows a decreasing trend,and the seismic energy is dissipated gradually.