计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2013年
9期
223-226
,共4页
前馈神经网络%八扇区水泥胶结测井%胶结质量
前饋神經網絡%八扇區水泥膠結測井%膠結質量
전궤신경망락%팔선구수니효결측정%효결질량
feedforward neural network%SBT%cement quality
为了解决石油测井中水泥胶结质量识别误差较大的问题,采用八扇区水泥胶结测井仪进行声幅测量。仪器灵敏度变化以及泥浆对声信号的衰减所引起的误差可以综合利用首波幅度信息对其消除。通过对非线性连接权的神经网络方法的研究和阐述,克服了传统的BP学习算法过程中难以跳出局部极小值与收敛速度慢的缺点,使其具有3层BP网络的功能且提高了运行速度,优于统计识别方法。实验表明,前馈神经网络方法的应用可识别水泥胶结质量,识别正确率远高于相对幅度法,效果显著。
為瞭解決石油測井中水泥膠結質量識彆誤差較大的問題,採用八扇區水泥膠結測井儀進行聲幅測量。儀器靈敏度變化以及泥漿對聲信號的衰減所引起的誤差可以綜閤利用首波幅度信息對其消除。通過對非線性連接權的神經網絡方法的研究和闡述,剋服瞭傳統的BP學習算法過程中難以跳齣跼部極小值與收斂速度慢的缺點,使其具有3層BP網絡的功能且提高瞭運行速度,優于統計識彆方法。實驗錶明,前饋神經網絡方法的應用可識彆水泥膠結質量,識彆正確率遠高于相對幅度法,效果顯著。
위료해결석유측정중수니효결질량식별오차교대적문제,채용팔선구수니효결측정의진행성폭측량。의기령민도변화이급니장대성신호적쇠감소인기적오차가이종합이용수파폭도신식대기소제。통과대비선성련접권적신경망락방법적연구화천술,극복료전통적BP학습산법과정중난이도출국부겁소치여수렴속도만적결점,사기구유3층BP망락적공능차제고료운행속도,우우통계식별방법。실험표명,전궤신경망락방법적응용가식별수니효결질량,식별정학솔원고우상대폭도법,효과현저。
In order to solve the problem of big unavoidable error in cement bond logof oil casing-well engineering,the eight segmented cement bond tool is adopted to measure sonic amplitude. Comprehensive utilization of the first wave of amplitude information eliminates the inevitable errors caused by the mud on the attenuation of the acoustic signal,as well as changes in instrument sensitivity. The method of artificial neural network ( ANN) with nonlinear connected weights superior to that of statistics theory is studied,which can replace three-layer error back-propagation ( BP) algorithm,so the implied-layer removed,the calculating simplified,and the operated speed in-creased. Actual application example shows that the method of ANN can identify cement quality,the identification accuracy rate is much better than that of amplitude-compare method,and the application effect is very notable.